Generalized TRUST Algorithms for Global Optimization

The TRUST methodology addresses the unconstrained global optimization problem in terms of the evolution of a novel deterministic nonlinear dynamical system, which combines the concepts of subenergy tunneling and non-Lipschitzian “terminal” repellers. In this paper, the TRUST algorithms are generalized by extending the formalism to lower semicontinuous objective functions, and by allowing gradient-directed tunneling with componentwise flow direction reversal at the boundaries of the parameter domain. Known limitations of the methodology are summarized, and the reduction of a multi-dimensional problem to a one-dimensional case (e.g., via hyperspiral embedding) is discussed with regards to a formal convergence proof. Benchmark results are presented, which demonstrate that TRUST is substantially faster than previously published global optimization techniques.

[1]  M. A. Styblinski,et al.  Experiments in nonconvex optimization: Stochastic approximation with function smoothing and simulated annealing , 1990, Neural Networks.

[2]  Gary J. Koehler,et al.  Deterministic global optimal FNN training algorithms , 1994, Neural Networks.

[3]  Yong Yao,et al.  Dynamic tunneling algorithm for global optimization , 1989, IEEE Trans. Syst. Man Cybern..

[4]  D. C. Chin,et al.  A more efficient global optimization algorithm based on Styblinski and Tang , 1994, Neural Networks.

[5]  Jacob Barhen,et al.  Non-Lipschitzian Neural Dynamics , 1990 .

[6]  F. Aluffi-Pentini,et al.  Global optimization and stochastic differential equations , 1985 .

[7]  Renpu Ge,et al.  A Filled Function Method for Finding a Global Minimizer of a Function of Several Variables , 1990, Math. Program..

[8]  C. D. Perttunen,et al.  Lipschitzian optimization without the Lipschitz constant , 1993 .

[9]  Jon G. Rokne,et al.  New computer methods for global optimization , 1988 .

[10]  Aimo A. Törn,et al.  Global Optimization , 1999, Science.

[11]  Michail Zak,et al.  Terminal attractors in neural networks , 1989, Neural Networks.

[12]  R. Eckmiller Advanced neural computers , 1990 .

[13]  Panos M. Pardalos,et al.  State of the Art in Global Optimization , 1996 .

[14]  V. A. Grishagin,et al.  A parallel method for finding the global minimum of univariate functions , 1994 .

[15]  A. V. Levy,et al.  The Tunneling Algorithm for the Global Minimization of Functions , 1985 .

[16]  H. Szu Fast simulated annealing , 1987 .

[17]  C. D. Gelatt,et al.  Optimization by Simulated Annealing , 1983, Science.

[18]  L. Dixon,et al.  Parallel algorithms for global optimization , 1993 .

[19]  P. Pardalos,et al.  State of the art in global optimization: computational methods and applications , 1996 .

[20]  Bedri C. Cetin,et al.  Terminal repeller unconstrained subenergy tunneling (trust) for fast global optimization , 1993 .

[21]  Griff L. Bilbro Fast stochastic global optimization , 1994, IEEE Trans. Syst. Man Cybern..

[22]  D. Luenberger Optimization by Vector Space Methods , 1968 .

[23]  Yves Cherruault,et al.  Approximation of a several variables function by a one variable function and application to global optimization , 1993 .

[24]  H. Bremermann A method of unconstrained global optimization , 1970 .