Solar illumination control of ionospheric outflow above polar cap arcs

We measure the flux density, composition, and energy of outflowing ions above the polar cap, accelerated by quasi‐static electric fields parallel to the magnetic field and associated with polar cap arcs, using Cluster. Mapping the spacecraft position to its ionospheric foot point, we analyze the dependence of these parameters on the solar zenith angle (SZA). We find a clear transition at SZA between ∼94° and ∼107°, with the O+ flux higher above the sunlit ionosphere. This dependence on the illumination of the local ionosphere indicates that significant O+ upflow occurs locally above the polar ionosphere. The same is found for H+, but to a lesser extent. This effect can result in a seasonal variation of the total ion upflow from the polar ionosphere. Furthermore, we show that low‐magnitude field‐aligned potential drops are preferentially observed above the sunlit ionosphere, suggesting a feedback effect of ionospheric conductivity.

[1]  M. Ashour‐Abdalla,et al.  Circulation of Heavy Ions and Their Dynamical Effects in the Magnetosphere: Recent Observations and Models , 2014 .

[2]  I. Mann,et al.  Vlasov simulations of parallel potential drops , 2013 .

[3]  T. Karlsson The Acceleration Region of Stable Auroral Arcs , 2013 .

[4]  S. Akasofu,et al.  Auroral Arcs and Auroral Potential Structure , 2013 .

[5]  R. Schunk The Polar Wind , 2013 .

[6]  A. Eriksson,et al.  Hot and cold ion outflow: Spatial distribution of ion heating , 2012 .

[7]  K. Svenes,et al.  Estimating the capture and loss of cold plasma from ionospheric outflow , 2012 .

[8]  T. Gombosi,et al.  Modeling solar zenith angle effects on the polar wind , 2012 .

[9]  Yongliang Zhang,et al.  Polar cap arcs from the magnetosphere to the ionosphere: kinetic modelling and observations by Cluster and TIMED , 2012 .

[10]  M. André,et al.  Low‐energy ions: A previously hidden solar system particle population , 2012 .

[11]  J. Carbary,et al.  TIMED/GUVI observation of solar illumination effect on auroral energy deposition , 2011 .

[12]  C. Jacquey,et al.  Polar cap ion beams during periods of northward IMF: Cluster statistical results , 2011 .

[13]  P. Lindqvist,et al.  Altitude distribution of the auroral acceleration potential determined from cluster satellite data at different heights. , 2011, Physical review letters.

[14]  T. Moore,et al.  Mechanisms of ionospheric mass escape , 2010 .

[15]  J. Keyser,et al.  Auroral and sub-auroral phenomena: an electrostatic picture , 2010 .

[16]  Patrick T. Newell,et al.  Seasonal variations in diffuse, monoenergetic, and broadband aurora , 2009 .

[17]  E. Engwall,et al.  Survey of cold ionospheric outflows in the magnetotail , 2009 .

[18]  D. Knudsen,et al.  Statistical study of inverted-V structures in FAST data , 2008 .

[19]  V. Pierrard,et al.  Kinetic modeling of the polar wind , 2007 .

[20]  W.K. (Bill) Peterson,et al.  The polar wind: Recent observations , 2007 .

[21]  W. Lotko The magnetosphere-ionosphere system from the perspective of plasma circulation : A tutorial , 2007 .

[22]  J. Sauvaud,et al.  A multi-satellite study of accelerated ionospheric ion beams above the polar cap , 2006 .

[23]  C. Carlson,et al.  FAST observations of the solar illumination dependence of downgoing auroral electron beams: Relationship to electron energy flux , 2006 .

[24]  C. Russell,et al.  Polar study of ionospheric ion outflow versus energy input , 2005 .

[25]  I. Papamastorakis,et al.  First multispacecraft ion measurements in and near the Earth's magnetosphere with the identical Cluster ion spectrometry (CIS) experiment , 2001 .

[26]  Thomas E. Moore,et al.  Source processes in the high-latitude ionosphere , 1999 .

[27]  Paul D. Craven,et al.  Polar wind survey with the Thermal Ion Dynamics Experiment/Plasma Source Instrument suite aboard POLAR , 1998 .

[28]  S. Tam,et al.  Further development in theory/data closure of the photoelectron-driven polar wind and day-night transition of the outflow , 1998 .

[29]  R. Elphic,et al.  FAST satellite observations of electric field structures in the auroral zone , 1998 .

[30]  D. G. Brown,et al.  Self‐consistent simulation of the photoelectron‐driven polar wind from 120 km to 9 R E altitude , 1998 .

[31]  R. Schunk,et al.  Polar Cap Arcs: A Review , 1997 .

[32]  M. André,et al.  Sources of Ion Outflow in the High Latitude Ionosphere , 1997 .

[33]  David P. Stern,et al.  Modeling the global magnetic field of the large‐scale Birkeland current systems , 1996 .

[34]  C. Meng,et al.  Suppression of discrete aurorae by sunlight , 1996, Nature.

[35]  S. Tam,et al.  Self‐consistent kinetic photoelectron effects on the polar wind , 1995 .

[36]  B. A. Whalen,et al.  EXOS D (Akebono) suprathermal mass spectrometer observations of the polar wind , 1993 .

[37]  Mike Lockwood,et al.  The cleft ion fountain , 1985 .

[38]  J. Green,et al.  On the origin of polar ion streams , 1985 .

[39]  T. Killeen,et al.  Escape of suprathermal O(+) ions in the polar cap , 1985 .

[40]  J. Green,et al.  First measurements of supersonic polar wind in the polar magnetosphere , 1984 .

[41]  R. Lundin,et al.  An observed relation between magnetic field aligned electric fields and downward electron energy fluxes in the vicinity of auroral forms , 1979 .

[42]  L. Cogger,et al.  Evidence for a correlation between Sun-aligned arcs and the interplanetary magnetic field direction , 1976 .

[43]  W. Axford The polar wind and the terrestrial helium budget , 1968 .

[44]  T. Holzer,et al.  The polar wind , 1968 .

[45]  F. Michel,et al.  Plasma in the geomagnetic tail , 1966 .

[46]  T. Davis Negative correlation between polar‐cap visual aurora and magnetic activity , 1963 .

[47]  B. Hultqvist Magnetospheric plasma sources and losses : final report of the ISSI study project on source and loss processes , 1999 .

[48]  C. P. Escoubet,et al.  CLUSTER – SCIENCE AND MISSION OVERVIEW , 1997 .

[49]  L. Lyons Discrete aurora as the direct result of an inferred high‐altitude generating potential distribution , 1981 .

[50]  J. Kan,et al.  Physics of auroral arc formation , 1981 .

[51]  L. Lyons Generation of large-scale regions of auroral currents, electric potentials, and precipitation by the divergence of the convection electric field , 1980 .