Shock filter coupled to curvature diffusion for image denoising and sharpening

The frequent problem in low-level vision arises from the goal to eliminate noise and uninteresting details from an image, without blurring semantically important structures such as edges. Partial differential equations (PDEs) have recently dominated image processing research, as a very good tool for noise elimination, image enhancement and edge detection. In this paper, we present a biased PDE filter based on a coupling between shock filter and curvature diffusion. This model removes noise and sharpens edges efficiently. It preserves well the location of the shocks by synchronising both effects of smoothing and deblurring. Empirical results on different kinds of images confirm these advantages.

[1]  L. Álvarez,et al.  Signal and image restoration using shock filters and anisotropic diffusion , 1994 .

[2]  Mohamed Cheriet,et al.  Enhanced and restored signals as a generalized solution for shock filter models. Part I—existence and uniqueness result of the Cauchy problem , 2003 .

[3]  Qiuqi Ruan,et al.  Region-Based Shock-Diffusion Equation for Adaptive Image Enhancement , 2006, IWICPAS.

[4]  Joachim Weickert,et al.  Coherence-Enhancing Shock Filters , 2003, DAGM-Symposium.

[5]  Rachid Deriche,et al.  Image coupling, restoration and enhancement via PDE's , 1997, Proceedings of International Conference on Image Processing.

[6]  P. G. Ciarlet,et al.  Introduction a l'analyse numerique matricielle et a l'optimisation , 1984 .

[7]  Anthony J. Yezzi,et al.  Curve evolution implementation of the Mumford-Shah functional for image segmentation, denoising, interpolation, and magnification , 2001, IEEE Trans. Image Process..

[8]  Stanley Osher,et al.  Image Denoising and Decomposition with Total Variation Minimization and Oscillatory Functions , 2004, Journal of Mathematical Imaging and Vision.

[9]  Mohamed Cheriet,et al.  Enhanced and restored signals as a generalized solution for shock filter models. Part II - numerical study , 2003 .

[10]  Yasser M. Kadah,et al.  Real-time speckle reduction and coherence enhancement in ultrasound imaging via nonlinear anisotropic diffusion , 2002, IEEE Transactions on Biomedical Engineering.

[11]  Joachim Weickert,et al.  Coherence-enhancing diffusion of colour images , 1999, Image Vis. Comput..

[12]  Guillermo Sapiro,et al.  Geodesic Active Contours , 1995, International Journal of Computer Vision.

[13]  L. Rudin,et al.  Feature-oriented image enhancement using shock filters , 1990 .

[14]  Yehoshua Y. Zeevi,et al.  Image enhancement and denoising by complex diffusion processes , 2004, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[15]  D. Euvrard,et al.  Résolution numérique des équations aux dérivées partielles de la physique, de la mécanique et des sciences de l'ingénieur , 1987 .

[16]  D. Euvrard,et al.  Resolution numerique des equations aux derivees partielles , 1988 .

[17]  P. Lions,et al.  Image selective smoothing and edge detection by nonlinear diffusion. II , 1992 .

[18]  J. Weickert Applications of nonlinear diffusion in image processing and computer vision , 2000 .

[19]  Anthony J. Yezzi,et al.  Modified curvature motion for image smoothing and enhancement , 1998, IEEE Trans. Image Process..

[20]  Azriel Rosenfeld,et al.  Digital Picture Processing , 1976 .

[21]  Jitendra Malik,et al.  Scale-Space and Edge Detection Using Anisotropic Diffusion , 1990, IEEE Trans. Pattern Anal. Mach. Intell..

[22]  Max A. Viergever,et al.  Efficient and reliable schemes for nonlinear diffusion filtering , 1998, IEEE Trans. Image Process..

[23]  Bart M. ter Haar Romeny,et al.  Front-End Vision and Multi-Scale Image Analysis , 2003, Computational Imaging and Vision.

[24]  Kuo-Chin Fan,et al.  A new image flux conduction model and its application to selective image smoothing , 2001, IEEE Trans. Image Process..

[25]  Wolfgang Effelsberg,et al.  Fast Implicit Active Contour Models , 2002, DAGM-Symposium.

[26]  Arvid Lundervold,et al.  Noise removal using fourth-order partial differential equation with applications to medical magnetic resonance images in space and time , 2003, IEEE Trans. Image Process..

[27]  L. Rudin,et al.  Nonlinear total variation based noise removal algorithms , 1992 .

[28]  G. Papandreou,et al.  A fast multigrid implicit algorithm for the evolution of geodesic active contours , 2004, CVPR 2004.