Critical phenomena in cellular automata: perturbing the update, the transitions, the topology

We survey the effect of perturbing the regular structure of a cellular automaton. We are interested in critical phenomena, i.e., when a continuous variation in the local rules of a cellular automaton triggers a qualitative change of its global behaviour. We focus on three types of perturbations: (a) when the updating is made asynchronous, (b) when the transition rule is made stochastic, (c) when the topological defects are introduced. It is shown that although these perturbations have various effects on CA models, they generally produce the same effects, which are identified as first-order or second-order phase transitions. We present open questions related to this topic and discuss implications on the activity of modelling.

[1]  C. Marr,et al.  Outer-totalistic cellular automata on graphs , 2008, 0812.2408.

[2]  Damien Regnault,et al.  Progresses in the analysis of stochastic 2D cellular automata: A study of asynchronous 2D minority , 2007, Theor. Comput. Sci..

[3]  H. Hinrichsen Non-equilibrium critical phenomena and phase transitions into absorbing states , 2000, cond-mat/0001070.

[4]  Rodney A. Brooks,et al.  Asynchrony induces stability in cellular automata based models , 1994 .

[5]  Sheng-You Huang,et al.  Network-induced nonequilibrium phase transition in the "game of Life". , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[6]  Naotake Kamiura,et al.  Reconfiguring Circuits Around Defects in Self-Timed Cellular Automata , 2008, ACRI.

[7]  Kunihiko Kaneko,et al.  CORRIGENDUM: Phase transitions in two-dimensional stochastic cellular automata , 1986 .

[8]  G. Ódor Universality classes in nonequilibrium lattice systems , 2002, cond-mat/0205644.

[9]  James R. Slagle,et al.  Robustness of cooperation , 1996, Nature.

[10]  Nazim Fatès,et al.  Cellular Automata , 2004, Lecture Notes in Computer Science.

[11]  B A Huberman,et al.  Evolutionary games and computer simulations. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[12]  M Ali Saif,et al.  The prisoner’s dilemma with semi-synchronous updates: evidence for a first-order phase transition , 2009, 0910.0961.

[13]  H. Janssen,et al.  On the nonequilibrium phase transition in reaction-diffusion systems with an absorbing stationary state , 1981 .

[14]  Nazim Fatès,et al.  An Experimental Study of Robustness to Asynchronism for Elementary Cellular Automata , 2004, Complex Syst..

[15]  Michel Morvan,et al.  Coalescing Cellular Automata: Synchronization by Common Random Source for Asynchronous Updating , 2009, J. Cell. Autom..

[16]  Nazim Fatès,et al.  Directed Percolation Phenomena in Asynchronous Elementary Cellular Automata , 2006, ACRI.

[17]  Luís Correia,et al.  Asynchronous Stochastic Dynamics and the Spatial Prisoner's Dilemma Game , 2007, EPIA Workshops.

[18]  Nazim Fatès,et al.  Asynchronism Induces Second-Order Phase Transitions in Elementary Cellular Automata , 2007, J. Cell. Autom..

[19]  L. Schulman,et al.  Statistical mechanics of a dynamical system based on Conway's game of Life , 1978 .

[20]  Elwyn R. Berlekamp,et al.  Winning Ways for Your Mathematical Plays, Volume 2 , 2003 .

[21]  Nazim Fatès,et al.  Examples of Fast and Slow Convergence of 2D Asynchronous Cellular Systems , 2008, J. Cell. Autom..

[22]  T. E. Ingerson,et al.  Structure in asynchronous cellular automata , 1984 .

[23]  Birger Bergersen,et al.  Effect of boundary conditions on scaling in the ''game of Life'' , 1997 .

[24]  Nazim Fatès,et al.  Robustness of the Critical Behaviour in a Discrete Stochastic Reaction-Diffusion Medium , 2009, IWNC.