Recursive Observer Design, Homogeneous Approximation, and Nonsmooth Output Feedback Stabilization of Nonlinear Systems

We present a nonsmooth output feedback framework for local and/or global stabilization of a class of nonlinear systems that are not smoothly stabilizable nor uniformly observable. A systematic design method is presented for the construction of stabilizing, dynamic output compensators that are nonsmooth but Houmllder continuous. A new ingredient of the proposed output feedback control scheme is the introduction of a recursive observer design algorithm, making it possible to construct a reduced-order observer step-by-step, in a naturally augmented manner. Such a nonsmooth design leads to a number of new results on output feedback stabilization of nonlinear systems. One of them is the global stabilizability of a chain of odd power integrators by Holder continuous output feedback. The other one is the local stabilization using nonsmooth output feedback for a wide class of nonlinear systems in the Hessenberg form studied in a previous paper, where global stabilizability by nonsmooth state feedback was already proved to be possible

[1]  MingQing Xiao,et al.  Observers for linearly unobservable nonlinear systems , 2002, Syst. Control. Lett..

[2]  W. P. Dayawansa,et al.  Recent Advances in The Stabilization Problem for Low Dimensional Systems , 1992 .

[3]  Ali Saberi,et al.  Adaptive stabilization of a class of nonlinear systems using high-gain feedback , 1986, 1986 25th IEEE Conference on Decision and Control.

[4]  Arthur J. Krener,et al.  Locally Convergent Nonlinear Observers , 2003, SIAM J. Control. Optim..

[5]  Alberto Isidori,et al.  Nonlinear Control Systems II , 1999 .

[6]  J. Coron,et al.  Adding an integrator for the stabilization problem , 1991 .

[7]  Wei Lin,et al.  Nonsmooth output feedback stabilization of a class of genuinely nonlinear systems in the plane , 2003, IEEE Trans. Autom. Control..

[8]  Henry Hermes,et al.  Nilpotent and High-Order Approximations of Vector Field Systems , 1991, SIAM Rev..

[9]  Wei Lin,et al.  Non-Lipschitz continuous stabilizers for nonlinear systems with uncontrollable unstable linearization , 2001 .

[10]  A. Krener,et al.  Nonlinear observers with linearizable error dynamics , 1985 .

[11]  A. Fuller,et al.  Stability of Motion , 1976, IEEE Transactions on Systems, Man, and Cybernetics.

[12]  Wei Lin,et al.  Homogeneous observers, iterative design, and global stabilization of high-order nonlinear systems by smooth output feedback , 2004, IEEE Trans. Autom. Control..

[13]  Wei Lin,et al.  Smooth output feedback stabilization of planar systems without controllable/observable linearization , 2002, IEEE Trans. Autom. Control..

[14]  M. Zeitz,et al.  On nonlinear continuous observers , 1997 .

[15]  J. Gauthier,et al.  A simple observer for nonlinear systems applications to bioreactors , 1992 .

[16]  Arthur J. Krener,et al.  Linearization by output injection and nonlinear observers , 1983 .

[17]  MingQing Xiao,et al.  Nonlinear Observer Design in the Siegel Domain , 2002, SIAM J. Control. Optim..

[18]  R. W. Brockett,et al.  Asymptotic stability and feedback stabilization , 1982 .

[19]  I. Kolmanovsky,et al.  Nonsmooth stabilization of an underactuated unstable two degrees of freedom mechanical system , 1997, Proceedings of the 36th IEEE Conference on Decision and Control.

[20]  Wei Lin,et al.  A continuous feedback approach to global strong stabilization of nonlinear systems , 2001, IEEE Trans. Autom. Control..

[21]  P. A. N. Briggs,et al.  Mathematical methods for the study of automatic control systems , 1967, The Mathematical Gazette.

[22]  Andrea Bacciotti,et al.  Local Stabilizability of Nonlinear Control Systems , 1991, Series on Advances in Mathematics for Applied Sciences.

[23]  J. Tsinias,et al.  Explicit formulas of feedback stabilizers for a class of triangular systems with uncontrollable linearization , 1999 .

[24]  L. Rosier Homogeneous Lyapunov function for homogeneous continuous vector field , 1992 .

[25]  Eduardo Aranda-Bricaire,et al.  Constructive nonsmooth stabilization of triangular systems , 1999 .

[26]  A. Bacciotti,et al.  Liapunov functions and stability in control theory , 2001 .

[27]  M. Kawski Homogeneous Stabilizing Feedback Laws , 1990 .

[28]  Witold Respondek Transforming a single-input system to a p-normal form via feedback , 2003, 42nd IEEE International Conference on Decision and Control (IEEE Cat. No.03CH37475).

[29]  M. Kawski Stabilization of nonlinear systems in the plane , 1989 .

[30]  Wei Lin,et al.  On p-normal forms of nonlinear systems , 2003, IEEE Trans. Autom. Control..

[31]  W. P. Dayawansa,et al.  Asymptotic stabilization of a class of smooth two-dimensional systems , 1990 .