A chaos-based communication scheme via robust asymptotic feedback

A communication scheme based on chaos synchronization via feedback is presented. The main idea is to construct an augmented dynamical system from the synchronization error system, which is itself uncertain. Dynamic output feedback is applied to perform synchronization in spite of transmitter/receiver mismatches. In this way, the transmitted message (which can be analog or digital) can be recovered. Two illustrative examples are presented. (1) The Chua oscillator is used to show that the message signal is recovered in spite of parametric transmitter/receiver mismatches. (2) Two second-order driven oscillators are presented to show that the message can be recovered in spite of a strictly different model, which results in different master/slave dynamics.

[1]  Alan V. Oppenheim,et al.  Circuit implementation of synchronized chaos with applications to communications. , 1993, Physical review letters.

[2]  Ricardo Femat,et al.  On robust chaos suppression in a class of nondriven oscillators: application to the Chua's circuit , 1999 .

[3]  Ricardo Femat,et al.  Synchronization of a class of strictly different chaotic oscillators , 1997 .

[4]  R. Femat,et al.  On the chaos synchronization phenomena , 1999 .

[5]  Maciej Ogorzalek,et al.  Taming chaos. II. Control , 1993 .

[6]  Jackson Ea,et al.  Controls of dynamic flows with attractors. , 1991 .

[7]  Parlitz,et al.  General approach for chaotic synchronization with applications to communication. , 1995, Physical Review Letters.

[8]  J. Doyle,et al.  Essentials of Robust Control , 1997 .

[9]  Kevin M. Short,et al.  Steps Toward Unmasking Secure Communications , 1994 .

[10]  H. Khalil,et al.  Output feedback stabilization of fully linearizable systems , 1992 .

[11]  Edward Ott,et al.  Controlling chaos , 2006, Scholarpedia.

[12]  P. Khargonekar,et al.  Robust stabilization of uncertain linear systems: quadratic stabilizability and H/sup infinity / control theory , 1990 .

[13]  Cuomo,et al.  Circuit implementation of synchronized chaos with applications to communications. , 1993, Physical review letters.

[14]  A. Teel,et al.  Tools for Semiglobal Stabilization by Partial State and Output Feedback , 1995 .

[15]  S. Mascolo,et al.  A system theory approach for designing cryptosystems based on hyperchaos , 1999 .

[16]  Chai Wah Wu,et al.  A Simple Way to Synchronize Chaotic Systems with Applications to , 1993 .

[17]  Arjan van der Schaft,et al.  Non-linear dynamical control systems , 1990 .

[18]  Guanrong Chen,et al.  From Chaos to Order - Perspectives and Methodologies in Controlling Chaotic Nonlinear Dynamical Systems , 1993 .

[19]  F. Takens Detecting strange attractors in turbulence , 1981 .

[20]  T. Kapitaniak,et al.  MONOTONE SYNCHRONIZATION OF CHAOS , 1996 .

[21]  Henk Nijmeijer,et al.  An observer looks at synchronization , 1997 .

[22]  Maciej Ogorzalek,et al.  Taming chaos. I. Synchronization , 1993 .

[23]  Teh-Lu Liao,et al.  An observer-based approach for chaotic synchronization with applications to secure communications , 1999 .

[24]  Ying-Cheng Lai,et al.  Controlling chaos , 1994 .