Optimization-based quasi-uniform spherical t-design and generalized multitaper for complex physiological time series

Motivated by the demand to analyze complex time series, we provide a quasi-uniform spherical $(k,l)$-design for any dimensional {\em complex} sphere based on an optimization approach. We provide the first theoretical justification of the existence of the optimal spherical $(k,l)$-design with the optimal order for any dimensional complex sphere. The design is also applicable to achieve a quasi-uniform spherical $t$-design for real sphere of arbitrary dimension. The real and complex designs are applied to construct a generalized multitaper scheme for the nonlinear-type time-frequency analysis, particularly the concentration of frequency and time (ConceFT), which we coin the QU-ConceFT. The proposed QU-ConceFT is applied to visualize the spindle structure in the electroencephalogram signal during the N2 sleep stage.

[1]  Eiichi Bannai,et al.  A survey on spherical designs and algebraic combinatorics on spheres , 2009, Eur. J. Comb..

[2]  Patrick Flandrin,et al.  Time-Frequency/Time-Scale Analysis , 1998 .

[3]  Margaret J. Robertson,et al.  Design and Analysis of Experiments , 2006, Handbook of statistics.

[4]  Salvatore Torquato,et al.  Local density fluctuations, hyperuniformity, and order metrics. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[5]  N. Huang,et al.  The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis , 1998, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[6]  Hau-Tieng Wu,et al.  Non‐parametric and adaptive modelling of dynamic periodicity and trend with heteroscedastic and dependent errors , 2014 .

[7]  M. D. McKay,et al.  A comparison of three methods for selecting values of input variables in the analysis of output from a computer code , 2000 .

[8]  Robert J. Bauer,et al.  Distribution of Points on a Sphere with Application to Star Catalogs , 1998 .

[9]  E. Saff,et al.  The Covering Radius of Randomly Distributed Points on a Manifold , 2015, 1504.03029.

[10]  M. Ferrara,et al.  Sleep spindles: an overview. , 2003, Sleep medicine reviews.

[11]  Hau-Tieng Wu,et al.  Recycling cardiogenic artifacts in impedance pneumography , 2018, Biomed. Signal Process. Control..

[12]  J. Seidel,et al.  Spherical codes and designs , 1977 .

[13]  Hau-Tieng Wu,et al.  A new approach for analysis of heart rate variability and QT variability in long-term ECG recording , 2018, BioMedical Engineering OnLine.

[14]  Jun Xiao,et al.  Multitaper Time-Frequency Reassignment for Nonstationary Spectrum Estimation and Chirp Enhancement , 2007, IEEE Transactions on Signal Processing.

[15]  Frances Y. Kuo,et al.  High-dimensional integration: The quasi-Monte Carlo way*† , 2013, Acta Numerica.

[16]  G. Szegő Zeros of orthogonal polynomials , 1939 .

[17]  E. Saff,et al.  Logarithmic Potentials with External Fields , 1997 .

[18]  Hrushikesh Narhar Mhaskar,et al.  L BERNSTEIN ESTIMATES AND APPROXIMATION BY SPHERICAL BASIS FUNCTIONS , 2010 .

[19]  Holger Dette,et al.  Optimal designs for regression with spherical data , 2017, Electronic Journal of Statistics.

[20]  Luc Pronzato,et al.  Design of computer experiments: space filling and beyond , 2011, Statistics and Computing.

[21]  J. Lindenstrauss,et al.  Distribution of points on spheres and approximation by zonotopes , 1988 .

[22]  Josef Dick,et al.  Covering of spheres by spherical caps and worst-case error for equal weight cubature in Sobolev spaces , 2015 .

[23]  Stephen J. Wright,et al.  Numerical Optimization (Springer Series in Operations Research and Financial Engineering) , 2000 .

[24]  Hau-Tieng Wu,et al.  Inference of synchrosqueezing transform -- toward a unified statistical analysis of nonlinear-type time-frequency analysis. , 2019, 1904.09534.

[25]  Eiichi Bannai,et al.  Tight spherical designs, I , 1979 .

[26]  A. Owen,et al.  Consistency of Markov chain quasi-Monte Carlo on continuous state spaces , 2011, 1105.1896.

[27]  Salvatore Torquato,et al.  Hyperuniformity and its generalizations. , 2016, Physical review. E.

[28]  E. Saff,et al.  Distributing many points on a sphere , 1997 .

[29]  Paul C. Leopardi A PARTITION OF THE UNIT SPHERE INTO REGIONS OF EQUAL AREA AND SMALL DIAMETER , 2006 .

[30]  Ian H. Sloan,et al.  QMC designs: Optimal order Quasi Monte Carlo integration schemes on the sphere , 2012, Math. Comput..

[31]  Henry Cohn,et al.  Universally optimal distribution of points on spheres , 2006, math/0607446.

[32]  K. Stolarsky,et al.  SUMS OF DISTANCES BETWEEN POINTS ON A SPHERE, n , 2010 .

[33]  A. Walden,et al.  Spectral analysis for physical applications : multitaper and conventional univariate techniques , 1996 .

[34]  Andriy Bondarenko,et al.  Optimal asymptotic bounds for spherical designs , 2010, 1009.4407.

[35]  John J. Borkowski,et al.  Measures of uniformity for space-filling uniform designs in a spherical region , 2016 .

[36]  A. Chesson,et al.  The American Academy of Sleep Medicine (AASM) Manual for the Scoring of Sleep and Associated Events: Rules, Terminology and Technical Specifications , 2007 .

[37]  Kinjal Basu,et al.  Low Discrepancy Constructions in the Triangle , 2014, SIAM J. Numer. Anal..

[38]  I. Dryden Statistical analysis on high-dimensional spheres and shape spaces , 2005, math/0508279.

[39]  Bruno Torrésani,et al.  A survey of uncertainty principles and some signal processing applications , 2012, Advances in Computational Mathematics.

[40]  Harald Niederreiter,et al.  Random number generation and Quasi-Monte Carlo methods , 1992, CBMS-NSF regional conference series in applied mathematics.

[41]  Johann S. Brauchart,et al.  Hyperuniform point sets on the sphere: probabilistic aspects , 2018 .

[42]  E. Saff,et al.  Asymptotics for minimal discrete energy on the sphere , 1995 .

[43]  L. Nilsson Respiration Signals from Photoplethysmography , 2013, Anesthesia and analgesia.

[44]  Stephen J. Wright,et al.  Numerical Optimization , 2018, Fundamental Statistical Inference.

[45]  Rob J Hyndman,et al.  Forecasting Time Series With Complex Seasonal Patterns Using Exponential Smoothing , 2011 .

[46]  Aidan Roy,et al.  Complex Spherical Designs and Codes , 2011, 1104.4692.

[47]  I. Daubechies Ten Lectures on Wavelets , 1992 .

[48]  K. Stolarsky Sums of distances between points on a sphere. II , 1972 .

[49]  Xiaojun Chen,et al.  Computational existence proofs for spherical t-designs , 2011, Numerische Mathematik.

[50]  Yi-Wen Liu,et al.  Analyzing transient-evoked otoacoustic emissions by concentration of frequency and time. , 2017, The Journal of the Acoustical Society of America.

[51]  Yong Zhang,et al.  Uniform Design: Theory and Application , 2000, Technometrics.

[52]  Cheng Guan Koay,et al.  A simple scheme for generating nearly uniform distribution of antipodally symmetric points on the unit sphere , 2011, J. Comput. Sci..

[53]  Ingrid Daubechies,et al.  Time-frequency localization operators: A geometric phase space approach , 1988, IEEE Trans. Inf. Theory.

[54]  Robert S. Womersley,et al.  Efficient Spherical Designs with Good Geometric Properties , 2017, 1709.01624.

[55]  Lauwerens Kuipers,et al.  Uniform distribution of sequences , 1974 .

[56]  P. Cochat,et al.  Et al , 2008, Archives de pediatrie : organe officiel de la Societe francaise de pediatrie.

[57]  Peter Grabner,et al.  Hyperuniform Point Sets on the Sphere: Deterministic Aspects , 2017, Constructive Approximation.

[58]  Hera Y. He,et al.  Permutation $p$-value approximation via generalized Stolarsky invariance , 2016, The Annals of Statistics.

[59]  Hau-Tieng Wu,et al.  ConceFT for Time-Varying Heart Rate Variability Analysis as a Measure of Noxious Stimulation During General Anesthesia , 2017, IEEE Transactions on Biomedical Engineering.

[60]  C. Choirat,et al.  Quadrature rules and distribution of points on manifolds , 2010, 1012.5409.

[61]  Zhijian He,et al.  Extensible grids: uniform sampling on a space filling curve , 2014, ArXiv.

[62]  Yi Wang,et al.  ConceFT: concentration of frequency and time via a multitapered synchrosqueezed transform , 2015, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[63]  John J Dziak,et al.  Factorial experiments: efficient tools for evaluation of intervention components. , 2014, American journal of preventive medicine.

[64]  E. Saff,et al.  Minimal Discrete Energy on the Sphere , 1994 .

[65]  Xiaojun Chen,et al.  Existence of Solutions to Systems of Underdetermined Equations and Spherical Designs , 2006, SIAM J. Numer. Anal..

[66]  Xiaojun Chen,et al.  Spherical Designs and Nonconvex Minimization for Recovery of Sparse Signals on the Sphere , 2018, SIAM J. Imaging Sci..

[67]  Patrick Flandrin,et al.  Improving the readability of time-frequency and time-scale representations by the reassignment method , 1995, IEEE Trans. Signal Process..

[68]  Andriy Bondarenko,et al.  Well-Separated Spherical Designs , 2013, 1303.5991.

[69]  F. Pillichshammer,et al.  Digital Nets and Sequences: Discrepancy Theory and Quasi-Monte Carlo Integration , 2010 .

[70]  Robert F. Tichy,et al.  Spherical designs, discrepancy and numerical integration , 1993 .

[71]  Yeol Je Cho,et al.  Topological Degree Theory and Applications , 2006 .

[72]  Xiaojun Chen,et al.  Well Conditioned Spherical Designs for Integration and Interpolation on the Two-Sphere , 2010, SIAM J. Numer. Anal..

[73]  Ian H. Sloan,et al.  A variational characterisation of spherical designs , 2009, J. Approx. Theory.

[74]  Ian H. Sloan,et al.  Extremal Systems of Points and Numerical Integration on the Sphere , 2004, Adv. Comput. Math..

[75]  F. Chang,et al.  E-optimal designs for polynomial regression without intercept , 1996 .

[76]  Yizeng Liang,et al.  Uniform design and its applications in chemistry and chemical engineering , 2001 .

[77]  Ian H. Sloan,et al.  Random Point Sets on the Sphere—Hole Radii, Covering, and Separation , 2015, Exp. Math..

[78]  Richard A. Davis,et al.  Introduction to time series and forecasting , 1998 .

[79]  Richard J. Beckman,et al.  A Comparison of Three Methods for Selecting Values of Input Variables in the Analysis of Output From a Computer Code , 2000, Technometrics.

[80]  Hrushikesh Narhar Mhaskar,et al.  Marcinkiewicz-Zygmund measures on manifolds , 2010, J. Complex..

[81]  Hrushikesh Narhar Mhaskar,et al.  Spherical Marcinkiewicz-Zygmund inequalities and positive quadrature , 2001, Math. Comput..

[82]  G. Clifford,et al.  A Review of Fetal ECG Signal Processing; Issues and Promising Directions. , 2010, The open pacing, electrophysiology & therapy journal.

[83]  Josef Dick,et al.  Quasi–Monte Carlo rules for numerical integration over the unit sphere $${\mathbb{S}^2}$$ , 2011, Numerische Mathematik.

[84]  I. Daubechies,et al.  Synchrosqueezed wavelet transforms: An empirical mode decomposition-like tool , 2011 .