Different metal sources in the evolution of an epithermal ore system: Evidence from mercury isotopes associated with the Erdaokan epithermal Ag-Pb-Zn deposit, NE China

[1]  Chunkit Lai,et al.  Geology, geochronology and geochemistry of large Duobaoshan Cu–Mo–Au orefield in NE China: Magma genesis and regional tectonic implications , 2021 .

[2]  B. Lehmann,et al.  Recycling of mercury from the atmosphere-ocean system into volcanic-arc–associated epithermal gold systems , 2020, Geology.

[3]  Changzhou Deng,et al.  Petrogenesis of Late Carboniferous A-type granites and Early Cretaceous adakites of the Songnen Block, NE China: Implications for the geodynamic evolution of the Paleo-Asian and Paleo-Pacific oceans , 2020 .

[4]  S. Grasby,et al.  Anomalous fractionation of mercury isotopes in the Late Archean atmosphere , 2020, Nature Communications.

[5]  Zhengcheng Song,et al.  Mercury and in situ sulfur isotopes as constraints on the metal and sulfur sources for the world’s largest Sb deposit at Xikuangshan, southern China , 2019, Mineralium Deposita.

[6]  M. Santosh,et al.  Mineralogy, fluid inclusions and S-Pb-H-O isotopes of the Erdaokan Ag-Pb-Zn deposit, Duobaoshan metallogenic belt, NE China: Implications for ore genesis , 2019, Ore Geology Reviews.

[7]  Chao Zhao,et al.  Switch of geodynamic setting from the Paleo-Asian Ocean to the Mongol-Okhotsk Ocean: Evidence from granitoids in the Duobaoshan ore field, Heilongjiang Province, Northeast China , 2019, Lithos.

[8]  R. Hu,et al.  Magmatic-Hydrothermal Origin of Mercury in Carlin-style and Epithermal Gold Deposits in China: Evidence from Mercury Stable Isotopes , 2019, ACS Earth and Space Chemistry.

[9]  S. König,et al.  The role of subduction recycling on the selenium isotope signature of the mantle: Constraints from Mariana arc lavas , 2019, Chemical Geology.

[10]  Yanxu Zhang,et al.  Modelling the mercury stable isotope distribution of Earth surface reservoirs: Implications for global Hg cycling , 2019, Geochimica et Cosmochimica Acta.

[11]  G. Jiang,et al.  An Integrated Model for Input and Migration of Mercury in Chinese Coastal Sediments. , 2019, Environmental science & technology.

[12]  Changzhou Deng,et al.  Age and geochemistry of Early Ordovician A-type granites in the Northeastern Songnen Block, NE China , 2018, Acta Geochimica.

[13]  Katherine A. Kelley,et al.  Interplay of crystal fractionation, sulfide saturation and oxygen fugacity on the iron isotope composition of arc lavas: An example from the Marianas , 2018 .

[14]  Xinbin Feng,et al.  Mercury isotope constraints on the source for sediment-hosted lead-zinc deposits in the Changdu area, southwestern China , 2018, Mineralium Deposita.

[15]  Jie Tang,et al.  Triassic volcanism along the eastern margin of the Xing'an Massif, NE China: Constraints on the spatial–temporal extent of the Mongol–Okhotsk tectonic regime , 2017 .

[16]  Xinbin Feng,et al.  Concentrations and isotopic variability of mercury in sulfide minerals from the Jinding Zn-Pb deposit, Southwest China , 2017 .

[17]  T. Plank,et al.  Stable vanadium isotopes as a redox proxy in magmatic systems , 2017 .

[18]  D. Krabbenhoft,et al.  Effects of mercury and thallium concentrations on high precision determination of mercury isotopic composition by Neptune Plus multiple collector inductively coupled plasma mass spectrometry , 2016 .

[19]  H. Hintelmann,et al.  Hydrology, Environment (Surface Geochemistry) The mercury isotope composition of Arctic coastal seawater , 2015 .

[20]  Xinbin Feng,et al.  Identifying the sources and processes of mercury in subtropical estuarine and ocean sediments using Hg isotopic composition. , 2015, Environmental science & technology.

[21]  F. Sun,et al.  Geochronology, geochemistry, and Sr-Nd-Hf isotopes of the early Paleozoic igneous rocks in the Duobaoshan area, NE China, and their geological significance , 2015 .

[22]  Yu Hao,et al.  Metallogenic events and tectonic setting of the Duobaoshan ore field in Heilongjiang Province, NE China , 2015 .

[23]  J. Blum,et al.  Mercury Isotopes in Earth and Environmental Sciences , 2014 .

[24]  X. Be Preliminary study on the pre-Mesozoic tectonic unit division of the Xing-Meng Orogenic Belt( XMOB) , 2014 .

[25]  R. Sillitoe Porphyry Copper Systems , 2010 .

[26]  D. Nordstrom,et al.  Mercury isotopic composition of hydrothermal systems in the Yellowstone Plateau volcanic field and Guaymas Basin sea-floor rift , 2009 .

[27]  Jeremy P. Richards,et al.  Postsubduction porphyry Cu-Au and epithermal Au deposits: Products of remelting of subduction-modified lithosphere , 2009 .

[28]  M. Barnett,et al.  Immobilization of mercury by pyrite (FeS2). , 2008, Environmental pollution.

[29]  S. Kesler,et al.  Isotope geochemistry of mercury in source rocks, mineral deposits and spring deposits of the California Coast Ranges, USA , 2008 .

[30]  J. Blum,et al.  Mass-Dependent and -Independent Fractionation of Hg Isotopes by Photoreduction in Aquatic Systems , 2007, Science.

[31]  J. Blum,et al.  Reporting of variations in the natural isotopic composition of mercury , 2007, Analytical and bioanalytical chemistry.

[32]  S. Kesler,et al.  Mercury isotope fractionation in fossil hydrothermal systems , 2005 .

[33]  J. Walshe,et al.  Giant Porphyry Deposits: Characteristics, Distribution, and Tectonic Controls , 2005 .

[34]  R. Binns,et al.  Release of gold-bearing fluids in convergent margin magmas prompted by magnetite crystallization , 2004, Nature.

[35]  B. Jahn The Central Asian Orogenic Belt and growth of the continental crust in the Phanerozoic , 2004, Geological Society, London, Special Publications.

[36]  S. Kay,et al.  Central Andean Ore Deposits Linked to Evolving Shallow Subduction Systems and Thickening Crust , 2001 .

[37]  Kenneth H. Rubin Degassing of metals and metalloids from erupting seamount and mid-ocean ridge volcanoes: Observations and predictions , 1997 .

[38]  J. Lescuyer,et al.  Gisements épithermaux et porphyriques: la connexion adakite , 1997 .

[39]  J. Lowenstern,et al.  The role of magmas in the formation of hydrothermal ore deposits , 1994, Nature.

[40]  M. Drummond,et al.  Derivation of some modern arc magmas by melting of young subducted lithosphere , 1990, Nature.

[41]  D. O. Hayba,et al.  Comparative anatomy of volcanic-hosted epithermal deposits; acid-sulfate and adularia-sericite types , 1987 .

[42]  Zhu Li-xin,et al.  Mercury, arsenic, antimony, bismuth and boron as geochemical indicators for geothermal areas , 1986 .