Assessing the impacts of anthropogenic drainage structures on hydrologic connectivity using high‐resolution digital elevation models

........................................................................................................................ i ACKNOWLEDGMENTS .................................................................................................III DEDICATION .................................................................................................................. IV LIST OF TABLES .......................................................................................................... VIII LIST OF FIGURES .......................................................................................................... IX CHAPTER

[1]  Andrea Tribe,et al.  Automated recognition of valley lines and drainage networks from grid digital elevation models: a review and a new method , 1992 .

[2]  P. Soille Optimal removal of spurious pits in grid digital elevation models , 2004 .

[3]  Stuart N. Lane,et al.  A network‐index‐based version of TOPMODEL for use with high‐resolution digital topographic data , 2004 .

[4]  Chenghu Zhou,et al.  An adaptive approach to selecting a flow‐partition exponent for a multiple‐flow‐direction algorithm , 2007, Int. J. Geogr. Inf. Sci..

[5]  J. Fairfield,et al.  Drainage networks from grid digital elevation models , 1991 .

[6]  S. Reutebuch,et al.  Light detection and ranging (LIDAR): an emerging tool for multiple resource inventory. , 2005 .

[7]  Tao Pei,et al.  An approach to computing topographic wetness index based on maximum downslope gradient , 2011, Precision Agriculture.

[8]  L. Wang,et al.  An efficient method for identifying and filling surface depressions in digital elevation models for hydrologic analysis and modelling , 2006, Int. J. Geogr. Inf. Sci..

[9]  K. Kraus,et al.  Determination of terrain models in wooded areas with airborne laser scanner data , 1998 .

[10]  L. Martz,et al.  The assignment of drainage direction over flat surfaces in raster digital elevation models , 1997 .

[11]  Markus Hollaus,et al.  Airborne laser scanning and usefulness for hydrological models , 2005 .

[12]  W. Rieger A phenomenon‐based approach to upslope contributing area and depressions in DEMs , 1998 .

[13]  T. Green,et al.  Comparison of grid‐based algorithms for computing upslope contributing area , 2006 .

[14]  P. Frazier,et al.  High-Resolution Remote Sensing of Upland Swamp Boundaries and Vegetation for Baseline Mapping and Monitoring , 2010, Wetlands.

[15]  G. Asner,et al.  Comparison of gully erosion estimates using airborne and ground-based LiDAR on Santa Cruz Island, California , 2010 .

[16]  M. Doyle,et al.  What is a stream? , 2011, Environmental science & technology.

[17]  Dino Torri,et al.  Prolegomena to sediment and flow connectivity in the landscape: A GIS and field numerical assessment , 2008 .

[18]  I. Heathcote Integrated Watershed Management: Principles and Practice , 1998 .

[19]  S. Cronin,et al.  Coupled fluid dynamics-sediment transport modelling of a Crater Lake break-out lahar: Mt. Ruapehu, New Zealand. , 2010 .

[20]  Xu Li,et al.  Drainage Structure Datasets and Effects on LiDAR-Derived Surface Flow Modeling , 2013, ISPRS Int. J. Geo Inf..

[21]  John B. Lindsay,et al.  Sensitivity of channel mapping techniques to uncertainty in digital elevation data , 2006, Int. J. Geogr. Inf. Sci..

[22]  Venkatesh Merwade,et al.  Incorporating the effect of DEM resolution and accuracy for improved flood inundation mapping , 2015 .

[23]  William W. Seemuller The extraction of ordered vector drainage networks from elevation data , 1989, Comput. Vis. Graph. Image Process..

[24]  Ashton Shortridge,et al.  Lidar Elevation Data for Surface Hydrologic Modeling: Resolution and Representation Issues , 2005 .

[25]  Guohe Huang,et al.  A study on DEM-derived primary topographic attributes for hydrologic applications: Sensitivity to elevation data resolution , 2008 .

[26]  K. Beven,et al.  THE PREDICTION OF HILLSLOPE FLOW PATHS FOR DISTRIBUTED HYDROLOGICAL MODELLING USING DIGITAL TERRAIN MODELS , 1991 .

[27]  M. López‐Vicente,et al.  Influence of DEM resolution on modelling hydrological connectivity in a complex agricultural catchment with woody crops , 2018 .

[28]  J. Seibert,et al.  A new triangular multiple flow direction algorithm for computing upslope areas from gridded digital elevation models , 2007 .

[29]  K. Beven,et al.  The in(a/tan/β) index:how to calculate it and how to use it within the topmodel framework , 1995 .

[30]  Susan Greenlee,et al.  Using Selective Drainage Methods to Extract Continuous Surface Flow from 1-Meter Lidar-Derived Digital Elevation Data , 2010 .

[31]  I. Moore,et al.  Digital terrain modelling: A review of hydrological, geomorphological, and biological applications , 1991 .

[32]  James M. Byrne,et al.  Improving overland flow routing by incorporating ancillary road data into Digital Elevation Models , 2003 .

[33]  R. Colombo,et al.  Carving and adaptive drainage enforcement of grid digital elevation models , 2003 .

[34]  P. Holmgren Multiple flow direction algorithms for runoff modelling in grid based elevation models: An empirical evaluation , 1994 .

[35]  R. M. Wallace,et al.  Terrain Analysis Using Digital Elevation Models , 2001 .

[36]  Zhenyu Zhang,et al.  Drainage network extraction using LiDAR‐derived DEM in volcanic plains , 2010 .

[37]  D. Maidment Arc hydro : GIS for water resources , 2002 .

[38]  F. Pan,et al.  An algorithm for treating flat areas and depressions in digital elevation models using linear interpolation , 2012 .

[39]  P. J. Green,et al.  Density Estimation for Statistics and Data Analysis , 1987 .

[40]  Pin-Chun Huang,et al.  A simple depression-filling method for raster and irregular elevation datasets , 2015, Journal of Earth System Science.

[41]  Lawrence W. Martz,et al.  Automated recognition of valley lines and drainage networks from grid digital elevation models: a review and a new method — Comment , 1995 .

[42]  Peng Tian,et al.  Comparison of two different methods for determining flow direction in catchment hydrological modeling , 2009 .

[43]  Tomislav Hengl,et al.  Chapter 4 Preparation of DEMs for Geomorphometric Analysis , 2009 .

[44]  M. Hutchinson A new procedure for gridding elevation and stream line data with automatic removal of spurious pits , 1989 .

[45]  L. James,et al.  The LiDAR-side of Headwater Streams: Mapping Channel Networks with High-resolution Topographic Data , 2010 .

[46]  Aloysius Wehr,et al.  Airborne laser scanning—an introduction and overview , 1999 .

[47]  F. Wilcoxon Individual Comparisons by Ranking Methods , 1945 .

[48]  D. Maidment,et al.  A GIS assessment of nonpoint source pollution in the San Antonio-Nueces coastal basin , 1996 .

[49]  D. Gesch,et al.  Hydrography Change Detection: The Usefulness of Surface Channels Derived From LiDAR DEMs for Updating Mapped Hydrography 1 , 2013 .

[50]  J. Lindsay,et al.  Removal of artifact depressions from digital elevation models: towards a minimum impact approach , 2005 .

[51]  Ian Cluckie,et al.  An effective depression filling algorithm for DEM-based 2-D surface flow modelling , 2013 .

[52]  James Frew,et al.  Automated basin delineation from digital terrain data , 1983 .

[54]  D. Scott Mackay,et al.  A general model of watershed extraction and representation using globally optimal flow paths and up-slope contributing areas , 2000, Int. J. Geogr. Inf. Sci..

[55]  J. N. Callow,et al.  How does modifying a DEM to reflect known hydrology affect subsequent terrain analysis , 2007 .

[56]  Xiaoye Liu,et al.  Airborne LiDAR for DEM generation: some critical issues , 2008 .

[57]  Randy G. Stutheit,et al.  A Regional Guidebook for Applying theHydrogeomorphic Approach to AssessingWetland Functions of Rainwater BasinDepressional Wetlands in Nebraska , 2004 .

[58]  John C. Gallant,et al.  TAPES-G: a grid-based terrain analysis program for the environmental sciences , 1996 .

[59]  L. Martz,et al.  Automated extraction of drainage network and watershed data from digital elevation models , 1993 .

[60]  David G. Tarboton,et al.  A virtual tile approach to raster-based calculations of large digital elevation models in a shared-memory system , 2015, Comput. Geosci..

[61]  L. Martz,et al.  The treatment of flat areas and depressions in automated drainage analysis of raster digital elevation models , 1998 .

[62]  D. Montgomery,et al.  Digital elevation model grid size, landscape representation, and hydrologic simulations , 1994 .

[63]  D. Tarboton A new method for the determination of flow directions and upslope areas in grid digital elevation models , 1997 .

[64]  Fan-Rui Meng,et al.  Stream network modelling using lidar and photogrammetric digital elevation models: a comparison and field verification , 2008 .

[65]  P. Soille,et al.  Influence of pit removal methods on river network position , 2012 .

[66]  Tim L. Webster,et al.  An automated GIS procedure for comparing GPS and proximal LIDAR elevations , 2006, Comput. Geosci..

[67]  A. Habib,et al.  Photogrammetric and Lidar Data Registration Using Linear Features , 2005 .

[68]  N. Pfeifer GEOMETRICAL ASPECTS OF AIRBORNE LASER SCANNING AND TERRESTRIAL LASER SCANNING , 2007 .

[69]  Gregory J. McCabe,et al.  Comparison of Single and Multiple Flow Direction Algorithms for Computing Topographic Parameters in TOPMODEL , 1995 .

[70]  Pierre Soille,et al.  Morphological carving , 2004, Pattern Recognit. Lett..

[71]  Wolfgang Schwanghart,et al.  Flow network derivation from a high resolution DEM in a low relief, agrarian landscape , 2013 .

[72]  S. K. Jenson,et al.  Extracting topographic structure from digital elevation data for geographic information-system analysis , 1988 .

[73]  Qing Zhu,et al.  An efficient depression processing algorithm for hydrologic analysis , 2006, Comput. Geosci..

[74]  K. Beven,et al.  A physically based, variable contributing area model of basin hydrology , 1979 .

[75]  John B. Lindsay,et al.  The practice of DEM stream burning revisited , 2016 .

[76]  Giulia Sofia,et al.  High‐resolution topography and anthropogenic feature extraction: testing geomorphometric parameters in floodplains , 2014 .

[77]  D. Maune Digital Elevation Model Technologies and Applications: The DEM Users Manual , 2019 .

[78]  John P. Wilson,et al.  Comparison of the performance of flow‐routing algorithms used in GIS‐based hydrologic analysis , 2007 .

[79]  P. Zandbergen The effect of cell resolution on depressions in Digital Elevation Models , 2006 .

[80]  Richard Barnes,et al.  Priority-Flood: An Optimal Depression-Filling and Watershed-Labeling Algorithm for Digital Elevation Models , 2015, Comput. Geosci..

[81]  M. J. Abedini,et al.  On depressional storages: The effect of DEM spatial resolution , 2006 .

[82]  X. Chu,et al.  Effects of DEM Resolution on Surface Depression Properties and Hydrologic Connectivity , 2013 .

[83]  John P. Wilson,et al.  DEM resolution dependencies of terrain attributes across a landscape , 2007, Int. J. Geogr. Inf. Sci..

[84]  John B. Lindsay,et al.  Modelling surface drainage patterns in altered landscapes using LiDAR , 2015, Int. J. Geogr. Inf. Sci..

[85]  Frédéric Darboux,et al.  A fast, simple and versatile algorithm to fill the depressions of digital elevation models , 2002 .

[86]  L. Martz,et al.  An outlet breaching algorithm for the treatment of closed depressions in a raster DEM , 1999 .