The design and manufacture of immediate-release optimal solid dosage forms

[1]  C. Rinaldi,et al.  Effect of molecular weight, temperature, and additives on the moisture sorption properties of polyethylene glycol. , 2010, Journal of pharmaceutical sciences.

[2]  N. Peppas,et al.  Present and future applications of biomaterials in controlled drug delivery systems. , 1981, Biomaterials.

[3]  Juergen Siepmann,et al.  A New Mathematical Model Quantifying Drug Release from Bioerodible Microparticles Using Monte Carlo Simulations , 2002, Pharmaceutical Research.

[4]  P. R. Owen,et al.  Heat transfer across rough surfaces , 1963, Journal of Fluid Mechanics.

[5]  Robert Langer,et al.  Modeling of polymer erosion in three dimensions: Rotationally symmetric devices , 1995 .

[6]  N A Peppas,et al.  A new model describing the swelling and drug release kinetics from hydroxypropyl methylcellulose tablets. , 1999, Journal of pharmaceutical sciences.

[7]  S. Edwards,et al.  The Theory of Polymer Dynamics , 1986 .

[8]  N. Peppas,et al.  Mechanisms of solute release from porous hydrophilic polymers , 1983 .

[9]  N A Peppas,et al.  Modeling of drug release from delivery systems based on hydroxypropyl methylcellulose (HPMC). , 2001, Advanced drug delivery reviews.

[10]  G. Pharr,et al.  An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments , 1992 .

[11]  P. Costa,et al.  Modeling and comparison of dissolution profiles. , 2001, European journal of pharmaceutical sciences : official journal of the European Federation for Pharmaceutical Sciences.

[12]  H. Lieberman,et al.  Pharmaceutical dosage forms : tablets , 1980 .

[13]  A. W. Hixson,et al.  Dependence of Reaction Velocity upon surface and Agitation , 1931 .

[14]  Geoffrey Boothroyd,et al.  Product design for manufacture and assembly , 1994, Comput. Aided Des..

[15]  Nicholas A. Peppas,et al.  A simple equation for description of solute release II. Fickian and anomalous release from swellable devices , 1987 .

[16]  Robert Langer,et al.  Modeling monomer release from bioerodible polymers , 1995 .

[17]  Nicholas A. Peppas,et al.  Solute and penetrant diffusion in swellable polymers. II. Verification of theoretical models , 1986 .

[18]  A. Noyes,et al.  The rate of solution of solid substances in their own solutions , 1897 .

[19]  Jun Kameoka,et al.  Measurement of the Young’s moduli of individual polyethylene oxide and glass nanofibres , 2005 .

[20]  Raymond C Rowe,et al.  Handbook of Pharmaceutical Excipients , 1994 .

[21]  Tim A. Osswald,et al.  Injection molding handbook , 2008 .

[22]  J. Siepmann,et al.  Hydrophilic Matrices for Controlled Drug Delivery: An Improved Mathematical Model to Predict the Resulting Drug Release Kinetics (the “sequential Layer” Model) , 2004, Pharmaceutical Research.

[23]  Y. Sugimori,et al.  Toyota production system and Kanban system Materialization of just-in-time and respect-for-human system , 1977 .

[24]  G. Pharr,et al.  Measurement of hardness and elastic modulus by instrumented indentation: Advances in understanding and refinements to methodology , 2004 .

[25]  F. Raouf,et al.  A preliminary evaluation of injection molding as a technology to produce tablets , 1998 .

[26]  Nicholas A. Peppas,et al.  A simple equation for description of solute release I. Fickian and non-fickian release from non-swellable devices in the form of slabs, spheres, cylinders or discs , 1987 .

[27]  P. R. Nixon,et al.  Diffusion coefficients of polymer chains in the diffusion layer adjacent to a swollen hydrophilic matrix. , 1997, Journal of pharmaceutical sciences.

[28]  J. Siepmann,et al.  Mathematical modeling of drug delivery. , 2008, International journal of pharmaceutics.

[29]  Irvin I. Rubin Injection Molding: Theory and Practice , 2013 .

[30]  N A Peppas,et al.  Calculation of the required size and shape of hydroxypropyl methylcellulose matrices to achieve desired drug release profiles. , 2000, International journal of pharmaceutics.

[31]  Z. Tadmor,et al.  Principles of Polymer Processing , 1979 .

[32]  Thomas Erneux,et al.  Free boundary problems in controlled release pharmaceuticals. I: diffusion in glassy polymers , 1988 .

[33]  Ping I. Lee Diffusional release of a solute from a polymeric matrix — approximate analytical solutions , 1980 .

[34]  M. Ashby,et al.  Cellular Materials in Nature and Medicine , 2010 .

[35]  R. Langer,et al.  Polymers for the sustained release of proteins and other macromolecules , 1976, Nature.

[36]  Donald L. Wise,et al.  Handbook of Pharmaceutical Controlled Release Technology , 2000 .

[37]  S. Redner,et al.  Introduction To Percolation Theory , 2018 .

[38]  Nikolai V Priezjev,et al.  The effective slip length and vortex formation in laminar flow over a rough surface , 2008, 0810.1552.

[39]  S. Taneda Visualization of Separating Stokes Flows , 1979 .

[40]  Leslie Z. Benet,et al.  Predicting Drug Disposition via Application of BCS: Transport/Absorption/ Elimination Interplay and Development of a Biopharmaceutics Drug Disposition Classification System , 2004, Pharmaceutical Research.

[41]  Nicholas A. Peppas,et al.  Modelling of drug diffusion through swellable polymeric systems , 1980 .

[42]  H. B. Hopfenberg,et al.  Controlled Release from Erodible Slabs, Cylinders, and Spheres , 1976 .

[43]  Shayne C. Gad,et al.  Pharmaceutical manufacturing handbook : production and processes , 2008 .

[44]  M. Ferrua,et al.  Modeling the Fluid Dynamics in a Human Stomach to Gain Insight of Food Digestion , 2010, Journal of food science.

[45]  Thomas Erneux,et al.  Field boundary problems in controlled release pharmaceuticals. II: swelling-controlled release , 1988 .

[46]  Edward L Cussler,et al.  Diffusion: Mass Transfer in Fluid Systems , 1984 .

[47]  Erich Brunner,et al.  Reaktionsgeschwindigkeit in heterogenen Systemen , 1904 .

[48]  Christos Reppas,et al.  Dissolution Testing as a Prognostic Tool for Oral Drug Absorption: Immediate Release Dosage Forms , 2004, Pharmaceutical Research.

[49]  P. R. Nixon,et al.  Drug release from hydrophilic matrices. 2. A mathematical model based on the polymer disentanglement concentration and the diffusion layer. , 1995, Journal of pharmaceutical sciences.

[50]  C. Hagemeir,et al.  A unified mathematical model for diffusion from drug-polymer composite tablets. , 1976, Journal of biomedical materials research.

[51]  David O. Cooney,et al.  Effect of geometry on the dissolution of pharmaceutical tablets and other solids: Surface detachment kinetics controlling , 1972 .

[52]  J C Middleton,et al.  Synthetic biodegradable polymers as orthopedic devices. , 2000, Biomaterials.

[53]  Sarfaraz K. Niazi,et al.  Specifications: Test Procedures and Acceptance Criteria for New Drug Substances and New Drug Products: Chemical Substances , 2016, Handbook of Pharmaceutical Manufacturing Formulations, Second Edition.

[54]  Masao Doi,et al.  Introduction to Polymer Physics , 1996 .

[55]  Shayne C. Gad,et al.  Pharmaceutical Manufacturing Handbook , 2008 .

[56]  J. C. Jaeger,et al.  Conduction of Heat in Solids , 1952 .

[57]  G. Watson Bessel Functions. (Scientific Books: A Treatise on the Theory of Bessel Functions) , 1923 .

[58]  J. Siepmann,et al.  HPMC-Matrices for Controlled Drug Delivery: A New Model Combining Diffusion, Swelling, and Dissolution Mechanisms and Predicting the Release Kinetics , 1999, Pharmaceutical Research.

[59]  P. Agrawala Pharmaceutical Dosage Forms: Tablets. Volume 1 , 1990 .

[60]  R. Langer,et al.  An explanation for the controlled release of macromolecules from polymers , 1985 .

[61]  Lakshman Pernenkil,et al.  A review on the continuous blending of powders , 2006 .

[62]  J. Siepmann,et al.  Mathematical modeling of bioerodible, polymeric drug delivery systems. , 2001, Advanced drug delivery reviews.

[63]  James P. Womack,et al.  Lean Thinking: Banish Waste and Create Wealth in Your Corporation , 1996 .

[64]  Panos Macheras,et al.  A century of dissolution research: from Noyes and Whitney to the biopharmaceutics classification system. , 2006, International journal of pharmaceutics.

[65]  R. W. Warfield,et al.  Elastic Constants of Bulk Polymers , 1972 .

[66]  Nikolaos A. Peppas,et al.  Solute and penetrant diffusion in swellable polymers. I. Mathematical modeling , 1986 .

[67]  A. Serajuddin,et al.  Solid dispersion of poorly water-soluble drugs: early promises, subsequent problems, and recent breakthroughs. , 1999, Journal of pharmaceutical sciences.

[68]  N. Dan,et al.  Controlling surface porosity and release from hydrogels using a colloidal particle coating. , 2010, Journal of colloid and interface science.

[69]  P. R. Nixon,et al.  Drug release from hydrophilic matrices. 1. New scaling laws for predicting polymer and drug release based on the polymer disentanglement concentration and the diffusion layer. , 1995, Journal of pharmaceutical sciences.

[70]  W. Nernst,et al.  Theorie der Reaktionsgeschwindigkeit in heterogenen Systemen , 1904 .

[71]  John Crank,et al.  The Mathematics Of Diffusion , 1956 .

[72]  L. T. Fan,et al.  A Generalized Model for Swelling‐Controlled Release Systems , 1986, Biotechnology progress.

[73]  Nicholas A. Peppas,et al.  Solute and penetrant diffusion in swellable polymers. IV. Semicrystalline, swelling-controlled release systems of poly(ethylene-co-vinyl alcohol) , 1986 .

[74]  A. Hoffman,et al.  Modeling of drug release from erodible tablets. , 1997, Journal of pharmaceutical sciences.