Estimation and variable selection for quantile partially linear single-index models

Partially linear single-index models are flexible dimension reduction semiparametric tools yet still retain ease of interpretability as linear models. This paper is concerned with the estimation and variable selection for partially linear single-index quantile regression models. Polynomial splines are used to estimate the unknown link function. We first establish the asymptotic properties of the quantile regression estimators. For feature selection, we adopt the smoothly clipped absolute deviation penalty (SCAD) approach to select simultaneously single-index variables and partially linear variables. We show that the regularized variable selection estimators are consistent and possess oracle properties. The consistency and oracle properties are also established under the proposed linear approximation of the nonparametric link function that facilitates fast computation. Furthermore, we show that the proposed SCAD tuning parameter selectors via the Schwarz information criterion can consistently identify the true model. Monte Carlo studies and an application to Boston Housing price data are presented to illustrate the proposed approach.

[1]  Xuming He,et al.  Quantile Regression Estimates for a Class of Linear and Partially Linear Errors-in-Variables Models , 1997 .

[2]  Runze Li,et al.  ESTIMATION AND TESTING FOR PARTIALLY LINEAR SINGLE-INDEX MODELS. , 2010, Annals of statistics.

[3]  Qi Li,et al.  Efficient Estimation of Additive Partially Linear Models , 2000 .

[4]  Shakeeb Khan,et al.  SEMIPARAMETRIC ESTIMATION OF A PARTIALLY LINEAR CENSORED REGRESSION MODEL , 2001, Econometric Theory.

[5]  Yan Yu,et al.  Single-index quantile regression , 2010, J. Multivar. Anal..

[6]  Xuming He,et al.  Inference for single-index quantile regression models with profile optimization , 2016 .

[7]  Cun-Hui Zhang Nearly unbiased variable selection under minimax concave penalty , 2010, 1002.4734.

[8]  Yingcun Xia,et al.  A SINGLE-INDEX QUANTILE REGRESSION MODEL AND ITS ESTIMATION , 2012, Econometric Theory.

[9]  Xuming He,et al.  Conditional growth charts , 2006 .

[10]  R. Tibshirani Regression Shrinkage and Selection via the Lasso , 1996 .

[11]  M. Yuan,et al.  Model selection and estimation in regression with grouped variables , 2006 .

[12]  Lixing Zhu,et al.  The EFM approach for single-index models , 2011, 1211.5220.

[13]  Carl de Boor,et al.  A Practical Guide to Splines , 1978, Applied Mathematical Sciences.

[14]  D. Ruppert,et al.  Penalized Spline Estimation for Partially Linear Single-Index Models , 2002 .

[15]  Zudi Lu,et al.  Local Linear Additive Quantile Regression , 2004 .

[16]  Yan Yu,et al.  Partially linear modeling of conditional quantiles using penalized splines , 2014, Comput. Stat. Data Anal..

[17]  Yan Yu,et al.  Penalised spline estimation for generalised partially linear single-index models , 2017, Stat. Comput..

[18]  Haipeng Shen,et al.  Functional Coefficient Regression Models for Non‐linear Time Series: A Polynomial Spline Approach , 2004 .

[19]  Dawit Zerom,et al.  On Additive Conditional Quantiles With High-Dimensional Covariates , 2003 .

[20]  Yufeng Liu,et al.  VARIABLE SELECTION IN QUANTILE REGRESSION , 2009 .

[21]  Hua Liang,et al.  ESTIMATION AND VARIABLE SELECTION FOR GENERALIZED ADDITIVE PARTIAL LINEAR MODELS. , 2011, Annals of statistics.

[22]  Zongwu Cai,et al.  Nonparametric Quantile Estimations for Dynamic Smooth Coefficient Models , 2008 .

[23]  Jianhui Zhou,et al.  Quantile regression in partially linear varying coefficient models , 2009, 0911.3501.

[24]  Jianqing Fan,et al.  Statistical Methods with Varying Coefficient Models. , 2008, Statistics and its interface.

[25]  H. Lian A note on the consistency of Schwarz’s criterion in linear quantile regression with the SCAD penalty , 2012 .

[26]  H. Zou The Adaptive Lasso and Its Oracle Properties , 2006 .

[27]  Jianqing Fan,et al.  Variable Selection via Nonconcave Penalized Likelihood and its Oracle Properties , 2001 .

[28]  D. Rubinfeld,et al.  Hedonic housing prices and the demand for clean air , 1978 .

[29]  Hua Liang,et al.  Partially linear single index models for repeated measurements , 2014, J. Multivar. Anal..

[30]  Joel L. Horowitz,et al.  Nonparametric Estimation of an Additive Quantile Regression Model , 2004 .

[31]  Zhongyi Zhu,et al.  Estimation in a semiparametric model for longitudinal data with unspecified dependence structure , 2002 .

[32]  H. Zou,et al.  Regularization and variable selection via the elastic net , 2005 .

[33]  Runze Li,et al.  Variable Selection for Partially Linear Models With Measurement Errors , 2009, Journal of the American Statistical Association.

[34]  Kjell A. Doksum,et al.  On average derivative quantile regression , 1997 .

[35]  P. Shi,et al.  Convergence rate of b-spline estimators of nonparametric conditional quantile functions ∗ , 1994 .

[36]  Wei Lin,et al.  Identifiability of single-index models and additive-index models , 2007 .

[37]  C. J. Stone,et al.  The Use of Polynomial Splines and Their Tensor Products in Multivariate Function Estimation , 1994 .

[38]  Jianqing Fan,et al.  Generalized Partially Linear Single-Index Models , 1997 .

[39]  Mi-Ok Kim,et al.  Quantile regression with varying coefficients , 2007, 0708.0471.