Homoclinic Bifurcations with Weakly Expanding Center Manifolds

Interaction of homoclinic bifurcation and bifurcation on the center manifold is studied. We show that the occurrence of different types of solutions near the homoclinic orbit is determined asymptotically by a reduced system on the center manifold. The method is applied to cases where the center manifold is one- or two-dimensional. When the center manifold is one-dimensional, we can obtain all the solutions near the homoclinic orbit. When a Hopf bifurcation occurs on a two-dimensional center manifold, the system can have infinitely many periodic and aperiodic solutions. These solutions disappear in a manner predicted by the reduced system when the perturbation term is increased. We prove that certain periodic and aperiodic solutions disappear through inverse period doubling or saddle-node bifurcation.

[1]  S. Chow,et al.  Homoclinic bifurcation at resonant eigenvalues , 1990 .

[2]  P. Hartman Ordinary Differential Equations , 1965 .

[3]  Clark Robinson,et al.  Bifurcation to infinitely many sinks , 1983 .

[4]  Shui-Nee Chow,et al.  Integral averaging and bifurcation , 1977 .

[5]  Xiao-Biao Lin,et al.  Using Melnikov's method to solve Silnikov's problems , 1990, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[6]  Shui-Nee Chow,et al.  Ck centre unstable manifolds , 1988, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[7]  D. Saari,et al.  Stable and Random Motions in Dynamical Systems , 1975 .

[8]  L. P. Šil'nikov,et al.  ON THE GENERATION OF A PERIODIC MOTION FROM TRAJECTORIES DOUBLY ASYMPTOTIC TO AN EQUILIBRIUM STATE OF SADDLE TYPE , 1968 .

[9]  K. Deimling Nonlinear functional analysis , 1985 .

[10]  Stephen Schecter,et al.  The saddle-node separatrix-loop bifurcation , 1987 .

[11]  J. Hale,et al.  Methods of Bifurcation Theory , 1996 .

[12]  S. Newhouse,et al.  Diffeomorphisms with infinitely many sinks , 1974 .

[13]  Jack K. Hale,et al.  Heteroclinic Orbits for Retarded Functional Differential Equations , 1986 .

[14]  B. Deng,et al.  Homoclinic bifurcations with nonhyperbolic equilbria , 1990 .

[15]  Colin Sparrow,et al.  Local and global behavior near homoclinic orbits , 1984 .

[16]  L. P. Šil'nikov,et al.  A CONTRIBUTION TO THE PROBLEM OF THE STRUCTURE OF AN EXTENDED NEIGHBORHOOD OF A ROUGH EQUILIBRIUM STATE OF SADDLE-FOCUS TYPE , 1970 .

[17]  M. Crandall,et al.  Bifurcation from simple eigenvalues , 1971 .

[18]  J. Carr Applications of Centre Manifold Theory , 1981 .

[19]  Stephen Wiggins,et al.  Global Bifurcations and Chaos , 1988 .

[20]  S. Schecter Melnikov's method at a saddle-node and the dynamics of the forced josephson junction , 1987 .

[21]  James A. Yorke,et al.  Period doubling cascades of attractors: A prerequisite for horseshoes , 1985 .

[22]  Bo Deng,et al.  The Sil'nikov problem, exponential expansion, strong λ-lemma, C1-linearization, and homoclinic bifurcation , 1989 .

[23]  P. Holmes,et al.  Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields , 1983, Applied Mathematical Sciences.

[24]  Bo Deng,et al.  Šil’nikov-hopf bifurcations , 1995 .

[25]  S. Gils,et al.  Center manifolds and contractions on a scale of Banach spaces , 1987 .

[26]  S. Chow,et al.  Bifurcation of a homoclinic orbit with a saddle-node equilibrium , 1990 .