High dielectric performance of (Nb5+, Lu3+) co-doped TiO2 ceramics in a broad temperature range

[1]  Yun Liu,et al.  Colossal permittivity of (Li, Nb) co-doped TiO2 ceramics , 2019, Ceramics International.

[2]  Chao Yang,et al.  Colossal Permittivity Materials as Superior Dielectrics for Diverse Applications , 2019, Advanced Functional Materials.

[3]  S. Leng,et al.  Colossal permittivity of Sb and Ga co-doped rutile TiO2 ceramics , 2019, Ceramics International.

[4]  Tian Wang,et al.  Enhanced relative permittivity in niobium and europium co-doped TiO2 ceramics , 2018, Journal of the European Ceramic Society.

[5]  Peng Liu,et al.  Colossal permittivity and dielectric relaxations in Tl + Nb co-doped TiO2 ceramics , 2018, Ceramics International.

[6]  L. Y. Sun,et al.  Colossal dielectric properties in (Ta0.5Al0.5)xTi1−xO2 ceramics , 2018 .

[7]  Zhang Ning,et al.  The effect of segregation structure on the colossal permittivity properties of (La0.5Nb0.5)xTi1−xO2 ceramics , 2018 .

[8]  Chunlin Zhao,et al.  Effects of Secondary Phases on the High-Performance Colossal Permittivity in Titanium Dioxide Ceramics. , 2018, ACS applied materials & interfaces.

[9]  Peng Liu,et al.  Dielectric properties of (Bi0.5Nb0.5)xTi1-xO2 ceramics with colossal permittivity , 2017 .

[10]  Caifu Zhong,et al.  Improved dielectric properties in A′‐site nickel‐doped CaCu3Ti4O12 ceramics , 2017 .

[11]  S. Maensiri,et al.  Preparation, characterization, and giant dielectric permittivity of (Y3+ and Nb5+) co–doped TiO2 ceramics , 2017 .

[12]  Xuan Luo,et al.  Niobium and divalent‐modified titanium dioxide ceramics: Colossal permittivity and composition design , 2017 .

[13]  Chao Yang,et al.  Colossal permittivity of (Mg + Nb) co-doped TiO2 ceramics with low dielectric loss , 2017 .

[14]  S. Maensiri,et al.  High-performance giant-dielectric properties of rutile TiO2 co-doped with acceptor-Sc3+ and donor-Nb5+ ions , 2017 .

[15]  C. Randall,et al.  Dielectric relaxation and localized electron hopping in colossal dielectric (Nb,In)-doped TiO2 rutile nanoceramics. , 2017, Physical chemistry chemical physics : PCCP.

[16]  S. Maensiri,et al.  Origin(s) of the apparent colossal permittivity in (In1/2Nb1/2)xTi1−xO2: clarification on the strongly induced Maxwell–Wagner polarization relaxation by DC bias , 2017 .

[17]  N. Chanlek,et al.  Effects of DC bias on non-ohmic sample-electrode contact and grain boundary responses in giant-permittivity La1.7Sr0.3Ni1−xMgxO4 ceramics , 2016 .

[18]  M. Khitouni,et al.  Enhancement of the dielectric response through Al-substitution in La1.6Sr0.4NiO4 nickelates , 2016 .

[19]  J. Kim,et al.  Colossal permittivity and low losses in Ba1–xSrxTiO3–δ reduced nanoceramics , 2016 .

[20]  P. Kidkhunthod,et al.  A novel approach to achieve high dielectric permittivity and low loss tangent in CaCu3Ti4O12 ceramics by co-doping with Sm3+ and Mg2+ ions , 2015 .

[21]  Zhenxiang Cheng,et al.  A colossal dielectric constant of an amorphous TiO2:(Nb, In) film with low loss fabrication at room temperature , 2014 .

[22]  Hua Chen,et al.  Electron-pinned defect-dipoles for high-performance colossal permittivity materials. , 2013, Nature materials.