CHARACTERIZATION OF THE AGRICULTURE OCCUPATION IN THE CERRADO BIOME USING MODIS TIME-SERIES

ABSTRACT .This paper aims to characterize the agriculture expansion in the Cerrado biome using time-series data of Moderate Resolution Imaging Spectroradiometer (MODIS) sensor. The study area is the municipality of Luis Eduardo Magalhaes (Bahia State, Brazil), with recent growth of agribusiness. The methodology can be subdivided into the following steps: 1) noise reduction, 2) endmembers identification, and 3) mixing linear analysis. In the noise reduction was applied the following procedures: 1) moving median filter; 2) Minimum Noise Fraction (MNF) transformation, and 3) Inverse MNF transformation. The results provided a significant noise reduction, besides eliminating the atmospheric interferences. Three endmembers were identified: 1) Natural Vegetation; 2) Agriculture; 3) Change Areas (conversion). We used the linear mixture analysis with the selected endmembers to generate fraction images. These images evidenced the agriculture expansion from west to east. These methods overcame the spatial resolution restrictions and evidenced the potential for discriminating the phenology of growing agricultural crops. Keywords : agriculture expansion, cerrado, time-series, MODIS, change detection. RESUMO . O artigo objetiva caracterizar a expansao agricola no bioma Cerrado utilizando dados de series temporais do sensor Moderate Resolution Imaging Spectroradiometer (MODIS). A area de estudo e o municipio de Luis Eduardo Magalhaes (Bahia), com recente crescimento do agronegocio. A metodologia pode ser subdividida nas seguintes etapas: (a) reducao do ruido, (b) identificacao dos membros finais, e (c) analise linear de mistura. Na reducao do ruido foram aplicados os seguintes procedimentos: (a) filtro de mediana, (b) transformacao Minimum Noise Fraction (MNF), e (c) transformacao inversa MNF. Os resultados proporcionaram uma reducao significativa dos ruidos, alem da eliminacao de interferencias atmosfericas. Tres membros finais foram identificados: 1) Vegetacao Natural; 2) Agricultura; 3) Area de Mudanca (Conversao). Foi usada a analise de mistura linear com os membros finais selecionados para gerar as imagens de fracao. Estas imagens evidenciaram a expansao agricola partindo de oeste para leste. Os metodos apresentados proporcionaram a superacao da limitacao da resolucao espacial e evidenciaram um potencial de discriminacao da fenologia de cultivos agricolas. Palavras-chave : expansao agricola, cerrado, series temporais, MODIS, deteccao de mudanca.

[1]  Compton J. Tucker,et al.  Mean and inter-year variation of growing-season normalized difference vegetation index for the Sahel 1981-1989 , 1991 .

[2]  Yosio Edemir Shimabukuro,et al.  Combining noise-adjusted principal components transform and median filter techniques for denoising modis temporal signatures , 2012 .

[3]  O. Junior,et al.  Modelagem de espectros temporais NDVI-MODIS, no período de 2000 a 2008, na bacia do rio Paracatu, Brasil , 2010 .

[4]  Nilton Correia da Silva,et al.  Classificação de padrões de savana usando assinaturas temporais NDVI do sensor MODLS no Parque Nacional Chapada dos Veadeiros , 2008 .

[5]  Cássio Murilo Dias da Silva Geodiversidade do Brasil: conhecer o passado, para entender o presente e prever o futuro. , 2008 .

[6]  Ramakrishna R. Nemani,et al.  A remote sensing based vegetation classification logic for global land cover analysis , 1995 .

[7]  David P. Roy,et al.  MODIS land data storage, gridding, and compositing methodology: Level 2 grid , 1998, IEEE Trans. Geosci. Remote. Sens..

[8]  Brian Curtiss,et al.  A method for manual endmember selection and spectral unmixing , 1996 .

[9]  A. Huete,et al.  Overview of the radiometric and biophysical performance of the MODIS vegetation indices , 2002 .

[10]  Nilton Correia da Silva,et al.  AVALIAÇÃO DOS CLASSIFICADORES ESPECTRAIS DE MÍNIMA DISTÂNCIA EUCLIDIANA E SPECTRAL CORRELATION MAPPER EM SÉRIES TEMPORAIS NDVI-MODIS NO CAMPO DE INSTRUÇÃO MILITAR DE FORMOSA (GO) , 2009, Revista Brasileira de Cartografia.

[11]  R. F. Guimarães,et al.  Aplicação do método de identificação espectral para imagens do sensor ASTER em ambiente de cerrado , 2005 .

[12]  S. Tompkins,et al.  Optimization of endmembers for spectral mixture analysis , 1997 .

[13]  M. A. Dardenne,et al.  ESTRATIGRAFIA E SEDIMENTAÇÃO DA BACIA SANFRANCISCANA: UMA REVISÃO , 1997 .

[14]  O. Junior,et al.  MISTURA ESPECTRAL: (I) DETECÇÃO DOS MEMBROS FINAIS UTILIZANDO A GEOMETRIA DO SIMPLEX , 2003 .

[15]  Andreas T. Ernst,et al.  ICE: a statistical approach to identifying endmembers in hyperspectral images , 2004, IEEE Transactions on Geoscience and Remote Sensing.

[16]  Yosio Edemir Shimabukuro,et al.  Integração de dados de sensoriamento remoto multi resoluções para a representação da cobertura da terra utilizando campos contínuos de vegetação e classificação por árvores de decisão , 2007 .

[17]  John B. Adams,et al.  Classification of multispectral images based on fractions of endmembers: Application to land-cover change in the Brazilian Amazon , 1995 .

[18]  S. Prince,et al.  Assessing the effects of human-induced land degradation in the former homelands of northern South Africa with a 1 km AVHRR NDVI time-series , 2004 .

[19]  Gregory Asner,et al.  Endmember bundles: a new approach to incorporating endmember variability into spectral mixture analysis , 2000, IEEE Trans. Geosci. Remote. Sens..

[20]  S. Prince Satellite remote sensing of primary production: comparison of results for Sahelian grasslands 1981-1988 , 1991 .

[21]  Steven W. Running,et al.  A regional phenology model for detecting onset of greenness in temperate mixed forests, Korea: an application of MODIS leaf area index , 2003 .

[22]  S. L Furby,et al.  Calibrating images from different dates to ‘like-value’ digital counts , 2001 .

[23]  Bruce Dickson,et al.  Noise reduction of aerial gamma-ray surveys , 1998 .

[24]  Navin Ramankutty,et al.  Land cover change over the last three centuries due to human activities: The availability of new global data sets , 2004 .

[25]  Renato Fontes Guimarães,et al.  IDENTIFICAÇÃO REGIONAL DA FLORESTA ESTACIONAL DECIDUAL NA BACIA DO RIO PARANÃ A PARTIR DA ANÁLISE MULTITEMPORAL DE IMAGENS MODIS , 2006 .

[26]  N. Ramankutty,et al.  Characterizing patterns of global land use: An analysis of global croplands data , 1998 .

[27]  C. Justice,et al.  Atmospheric correction of MODIS data in the visible to middle infrared: first results , 2002 .

[28]  J. Townshend,et al.  NDVI-derived land cover classifications at a global scale , 1994 .

[29]  D. Roy,et al.  An overview of MODIS Land data processing and product status , 2002 .

[30]  H. Mooney,et al.  Human Domination of Earth’s Ecosystems , 1997, Renewable Energy.

[31]  Paul E. Johnson,et al.  Quantitative determination of mineral types and abundances from reflectance spectra using principal components analysis , 1985 .

[32]  P. Switzer,et al.  A transformation for ordering multispectral data in terms of image quality with implications for noise removal , 1988 .

[33]  S. Prince A model of regional primary production for use with coarse resolution satellite data , 1991 .

[34]  Alan R. Gillespie,et al.  Vegetation in deserts. I - A regional measure of abundance from multispectral images. II - Environmental influences on regional abundance , 1990 .

[35]  A. Huete A soil-adjusted vegetation index (SAVI) , 1988 .