Effect of Casting Thickness on Microstructure and Mechanical Properties of the High-W Superalloy K416B

[1]  I. Steinbach,et al.  Effect of γ′ precipitate size on hardness and creep properties of Ni-base single crystal superalloys: Experiment and simulation , 2020 .

[2]  J. Cormier,et al.  Solidification rate driven microstructural stability and its effect on the creep property of a polycrystalline nickel-based superalloy K465 , 2020 .

[3]  J. Sieniawski,et al.  Effect of cooling rate on macro- and microstructure of thin-walled nickel superalloy precision castings , 2020 .

[4]  D. Raabe,et al.  Deformation of Borides in Nickel-based Superalloys: a Study of Segregation at Dislocations , 2019, Microscopy and Microanalysis.

[5]  Dierk Raabe,et al.  The effect of chromium and cobalt segregation at dislocations on nickel-based superalloys , 2018 .

[6]  H. Ding,et al.  Coupling effects of tungsten and molybdenum on microstructure and stress-rupture properties of a nickel-base cast superalloy , 2017 .

[7]  J. Qin,et al.  Evolution of Fe–rich phases in Mg melt and a novel method for separating Al and Fe from Al–Si–Fe alloys , 2017 .

[8]  Kui Liu,et al.  Effect of cooling rate on microstructure, microsegregation and mechanical properties of cast Ni-based superalloy K417G , 2017 .

[9]  Xiao-feng Sun,et al.  Thermodynamics analysis and precipitation behavior of fine carbide in K416B Ni-based superalloy with high W content during creep , 2015 .

[10]  M. Rahimian,et al.  A physical simulation study of the effect of thermal variations on the secondary dendrite arm spacing in a Ni-based superalloy , 2014 .

[11]  Jianguo Li,et al.  Evolution of microstructures at a wide range of solidification cooling rate in a Ni-based superalloy , 2013 .

[12]  D. Browne,et al.  The influence of cooling conditions on grain size, secondary phase precipitates and mechanical properties of biomedical alloy specimens produced by investment casting. , 2013, Journal of the mechanical behavior of biomedical materials.

[13]  M. Rahimian,et al.  Microstructure and hardness evolution in MAR-M247 Ni-based superalloy processed by controlled cooling and double heat treatment , 2013 .

[14]  Jianguo Li,et al.  Microstructural Evolution with a Wide Range of Solidification Cooling Rates in a Ni-Based Superalloy , 2013, Metallurgical and Materials Transactions. A.

[15]  Weiguo Zhang,et al.  Solidification microstructure of directionally solidified superalloy under high temperature gradient , 2012, Rare Metals.

[16]  B. Ge,et al.  Study of γ/γ′ Interfaces in Nickel-Based, Single-Crystal Superalloys by Scanning Transmission Electron Microscopy , 2011 .

[17]  R. J. Mitchell,et al.  The influence of cooling rate from temperatures above the γ′ solvus on morphology, mismatch and hardness in advanced polycrystalline nickel-base superalloys , 2008 .

[18]  L. Dobrzański,et al.  Effect of cooling rate on the solidification behavior of AC AlSi7Cu2 alloy , 2007 .

[19]  Liangfu Zheng Formation of eutectic (γ′ + α) and α transformation in Ta-bearing high W content cast Ni-base superalloys , 2005 .

[20]  Shusuo Li,et al.  ABNORMAL PHASES IN HIGH W CONTENT NICKEL BASE SUPERALLOYS AND PHASE CONTROL , 2004 .

[21]  J. Lee,et al.  The eutectic characteristic of MC-type carbide precipitation in a DS nickel-base superalloy , 1999 .

[22]  P. Weidman,et al.  On the drag of model dendrite , 1992, Metallurgical and Materials Transactions A.

[23]  C. Schwarz Die rechnerische Behandlung der Abkühlungs- und Erstarrungsvorgänge bei flüssigem Metall. II , 1931 .