A branch & bound algorithm for the 0-1 mixed integer knapsack problem with linear multiple choice constraints
暂无分享,去创建一个
[1] Fred W. Glover,et al. A o(n logn) algorithm for LP knapsacks with GUB constraints , 1979, Math. Program..
[2] Edward Y. H. Lin,et al. A Bibliographical Survey On Some Well-Known Non-Standard Knapsack Problems , 1998 .
[3] Eitan Zemel,et al. An O(n) Algorithm for the Linear Multiple Choice Knapsack Problem and Related Problems , 1984, Inf. Process. Lett..
[4] Chak-Kuen Wong,et al. Approximate Algorithms for Some Generalized Knapsack Problems , 1976, Theor. Comput. Sci..
[5] Mark H. Karwan,et al. The linear multiple choice knapsack problem , 1989 .
[6] Prabhakant Sinha,et al. The Multiple-Choice Knapsack Problem , 1979, Oper. Res..
[7] C. Witzgall. On One-Row Linear Programs , 1980 .
[8] David Pisinger. A minimal algorithm for the Multiple-choice Knapsack Problem , 1995 .
[9] Ronald L. Rivest,et al. Introduction to Algorithms , 1990 .
[10] Krzysztof Dudziski,et al. A fast algorithm for the linear multiple-choice knapsack problem , 1984 .
[11] George B. Dantzig,et al. Linear programming and extensions , 1965 .
[12] Ronald D. Armstrong,et al. A computational study of a multiple-choice knapsack algorithm , 1983, TOMS.
[13] Eitan Zemel,et al. The Linear Multiple Choice Knapsack Problem , 1980, Oper. Res..
[14] Saul I. Gass,et al. On the solution of special generalized upper-bounded problems: The LP/GUB knapsack problem and the λ-form separable convex objective function problem , 1985 .
[15] Ellis L. Johnson,et al. A note of the knapsack problem with special ordered sets , 1981, Oper. Res. Lett..
[16] Ronald L. Graham,et al. An Efficient Algorithm for Determining the Convex Hull of a Finite Planar Set , 1972, Inf. Process. Lett..
[17] Martin Dyer,et al. AN O(n) ALGORITHM FOR THE MULTIPLE-CHOICE , 2007 .