The SCC-DFTB method and its application to biological systems

The Self-consistent charge density functional tight-binding (SCC-DFTB) is an approximate quantum chemical method derived from density functional theory (DFT) based on a second-order expansion of the DFT total energy expression. Here, we review in detail the application of SCC-DFTB to biological systems and several extensions of the original formalism. The biological systems discussed turn out to be a challenge for DFT due to the occurrence of weak binding forces and charge transfer problems, both of which are not properly described by recent DFT-GGA functionals. Possible solutions and alternative strategies are presented and the role of SCC-DFTB in a general quantum chemical approach to biological systems is discussed

[1]  John W. Hepburn,et al.  A simple but reliable method for the prediction of intermolecular potentials , 1975 .

[2]  M. Dewar,et al.  Ground States of Molecules. 38. The MNDO Method. Approximations and Parameters , 1977 .

[3]  H. Eschrig,et al.  An optimized LCAO version for band structure calculations application to copper , 1978 .

[4]  A. Voityuk,et al.  MNDO calculations of systems containing hydrogen bonds , 1987 .

[5]  Foulkes,et al.  Tight-binding models and density-functional theory. , 1989, Physical review. B, Condensed matter.

[6]  H. Eschrig Optimized Lcao Method and the Electronic Structure of Extended Systems , 1989 .

[7]  Gerald Geudtner,et al.  Treatment of hydrogen bonding in SINDO1 , 1993, J. Comput. Chem..

[8]  Walter Thiel,et al.  Beyond the MNDO model: Methodical considerations and numerical results , 1993, J. Comput. Chem..

[9]  Brian J. Smith,et al.  An evaluation of the performance of density functional theory, MP2, MP4, F4, G2(MP2) and G2 procedures in predicting gas-phase proton affinities , 1994 .

[10]  Peter Pulay,et al.  CAN (SEMI) LOCAL DENSITY FUNCTIONAL THEORY ACCOUNT FOR THE LONDON DISPERSION FORCES , 1994 .

[11]  Donald G. Truhlar,et al.  Dual-Level Reaction-Path Dynamics (the /// Approach to VTST with Semiclassical Tunneling). Application to OH + NH3 .fwdarw. H2O + NH2 , 1995 .

[12]  J. Šponer,et al.  Density functional theory and molecular clusters , 1995, Journal of Computational Chemistry.

[13]  Donald G. Truhlar,et al.  Parameterization of NDDO wavefunctions using genetic algorithms. An evolutionary approach to parameterizing potential energy surfaces and direct dynamics calculations for organic reactions , 1995 .

[14]  José M. Pérez-Jordá,et al.  A density-functional study of van der Waals forces: rare gas diatomics. , 1995 .

[15]  Seifert,et al.  Construction of tight-binding-like potentials on the basis of density-functional theory: Application to carbon. , 1995, Physical review. B, Condensed matter.

[16]  Vincenzo Barone,et al.  Proton transfer in the ground and lowest excited states of malonaldehyde: A comparative density functional and post‐Hartree–Fock study , 1996 .

[17]  K. Ho,et al.  Environment-dependent tight-binding potential model , 1996 .

[18]  K. Morokuma,et al.  ONIOM: A Multilayered Integrated MO + MM Method for Geometry Optimizations and Single Point Energy Predictions. A Test for Diels−Alder Reactions and Pt(P(t-Bu)3)2 + H2 Oxidative Addition , 1996 .

[19]  Jacques Weber,et al.  Comparative Study of Benzene···X (X = O2, N2, CO) Complexes Using Density Functional Theory: The Importance of an Accurate Exchange−Correlation Energy Density at High Reduced Density Gradients , 1997 .

[20]  Evert Jan Baerends,et al.  Density functional results for isotropic and anisotropic multipole polarizabilities and C6, C7, and C8 Van der Waals dispersion coefficients for molecules , 1997 .

[21]  Michele Parrinello,et al.  A hybrid Gaussian and plane wave density functional scheme , 1997 .

[22]  David R. Bowler,et al.  Tight-binding modelling of materials , 1997 .

[23]  C. Reynolds,et al.  Semiempirical MO methods: the middle ground in molecular modeling , 1997 .

[24]  Yingkai Zhang,et al.  Describing van der Waals interaction in diatomic molecules with generalized gradient approximations: The role of the exchange functional , 1997 .

[25]  F. Mota,et al.  Are non-linear C-H⋯O contacts hydrogen bonds or Van der Waals interactions?. Establishing the limits between hydrogen bonds and Van der Waals interactions , 1998 .

[26]  Yingkai Zhang,et al.  Comment on “Generalized Gradient Approximation Made Simple” , 1998 .

[27]  Vincenzo Barone,et al.  Exchange functionals with improved long-range behavior and adiabatic connection methods without adjustable parameters: The mPW and mPW1PW models , 1998 .

[28]  Dmitrii E. Makarov,et al.  van der Waals Energies in Density Functional Theory , 1998 .

[29]  Sándor Suhai,et al.  Self Consistent-Charge Density-Functional Tight-Binding Method for Simulations of Biological Molecules , 1998 .

[30]  Sándor Suhai,et al.  Self-consistent-charge density-functional tight-binding method for simulations of complex materials properties , 1998 .

[31]  Á. Pérez‐Jiménez,et al.  Density-functional study of van der Waals forces on rare-gas diatomics: Hartree–Fock exchange , 1999 .

[32]  H.H.M. Cleveringa,et al.  MULTISCALE MODELLING OF MATERIALS , 1999 .

[33]  G. Seifert,et al.  A Tight-Binding Treatment for 13C NMR Spectra of Fullerenes , 1999 .

[34]  Donald G. Truhlar,et al.  Mapped Interpolation Scheme for Single-Point Energy Corrections in Reaction Rate Calculations and a Critical Evaluation of Dual-Level Reaction Path Dynamics Methods , 1999 .

[35]  Tatiana Korona,et al.  Anisotropic intermolecular interactions in van der Waals and hydrogen-bonded complexes: What can we get from density functional calculations? , 1999 .

[36]  G. Galli,et al.  NOON : a non-orthogonal localised orbital order-N method , 1999 .

[37]  Carlo Adamo,et al.  Predicting proton transfer barriers with density functional methods , 1999 .

[38]  Sándor Suhai,et al.  A comparative study of MP2, B3LYP, RHF and SCC-DFTB force fields in predicting the vibrational spectra of N-acetyl-L-alanine-N'-methyl amide: VA and VCD spectra , 1999 .

[39]  Thomas Frauenheim,et al.  Hybrid SCC-DFTB/molecular mechanical studies of H-bonded systems and ofN-acetyl-(L-Ala)nN?-methylamide helices in water solution , 2000 .

[40]  Michael Schreiber,et al.  Resonant Raman spectroscopy of 3,4,9,10-perylene-tetracarboxylic-dianhydride epitaxial films , 2000 .

[41]  Sándor Suhai,et al.  A Self‐Consistent Charge Density‐Functional Based Tight‐Binding Method for Predictive Materials Simulations in Physics, Chemistry and Biology , 2000 .

[42]  Walter Thiel,et al.  Orthogonalization corrections for semiempirical methods , 2000 .

[43]  L. Curtiss,et al.  Assessment of Gaussian-3 and density functional theories for a larger experimental test set , 2000 .

[44]  Sándor Suhai,et al.  DFT studies on helix formation in N-acetyl-(L-alanyl)n-N′-methylamide for n=1–20 , 2000 .

[45]  Denis Jacquemin,et al.  Assessment of Conventional Density Functional Schemes for Computing the Dipole Moment and (Hyper)polarizabilities of Push−Pull π-Conjugated Systems† , 2000 .

[46]  Efthimios Kaxiras,et al.  A Self-Consistent Charge Density-Functional Based Tight-Binding Scheme for Large Biomolecules , 2000 .

[47]  M Elstner,et al.  Quantum mechanics simulation of protein dynamics on long timescale , 2001, Proteins.

[48]  Efthimios Kaxiras,et al.  A QM/MM Implementation of the Self-Consistent Charge Density Functional Tight Binding (SCC-DFTB) Method , 2001 .

[49]  Thomas Frauenheim,et al.  Energetics and structure of glycine and alanine based model peptides: Approximate SCC-DFTB, AM1 and PM3 methods in comparison with DFT, HF and MP2 calculations , 2001 .

[50]  D. Sánchez-Portal,et al.  The SIESTA method for ab initio order-N materials simulation , 2001, cond-mat/0111138.

[51]  Thomas Frauenheim,et al.  Hydrogen bonding and stacking interactions of nucleic acid base pairs: A density-functional-theory based treatment , 2001 .

[52]  P. Lugli,et al.  A simple tight-binding approach to Time-Dependent Density-Functional Response-Theory , 2001 .

[53]  C. Chabalowski,et al.  Using Kohn−Sham Orbitals in Symmetry-Adapted Perturbation Theory to Investigate Intermolecular Interactions , 2001 .

[54]  K. Hirao,et al.  A long-range correction scheme for generalized-gradient-approximation exchange functionals , 2001 .

[55]  S. Suhai,et al.  Application of an approximate density-functional method to sulfur containing compounds , 2001 .

[56]  Saroj K. Nayak,et al.  Towards extending the applicability of density functional theory to weakly bound systems , 2001 .

[57]  Markus Meuwly,et al.  Simulation of proton transfer along ammonia wires: An “ab initio” and semiempirical density functional comparison of potentials and classical molecular dynamics , 2002 .

[58]  M. Elstner,et al.  11-cis-retinal protonated Schiff base: influence of the protein environment on the geometry of the rhodopsin chromophore. , 2002, Biochemistry.

[59]  J. Fabian,et al.  Calculation of excitation energies of organic chromophores: a critical evaluation , 2002 .

[60]  Qiang Cui,et al.  Functional specificities of methylglyoxal synthase and triosephosphate isomerase: a combined QM/MM analysis. , 2002, Journal of the American Chemical Society.

[61]  Qin Wu,et al.  Empirical correction to density functional theory for van der Waals interactions , 2002 .

[62]  Thomas Frauenheim,et al.  Atomistic simulations of complex materials: ground-state and excited-state properties , 2002 .

[63]  Karina Sendt,et al.  Failure of density-functional theory and time-dependent density-functional theory for large extended π systems , 2002 .

[64]  D. Truhlar,et al.  Quantum mechanical methods for enzyme kinetics. , 2003, Annual review of physical chemistry.

[65]  Pavel Hobza,et al.  Intercalators. 1. Nature of Stacking Interactions between Intercalators (Ethidium, Daunomycin, Ellipticine, and 4‘,6-Diaminide-2-phenylindole) and DNA Base Pairs. Ab Initio Quantum Chemical, Density Functional Theory, and Empirical Potential Study , 2002 .

[66]  M. Karplus,et al.  Combining ab initio and density functional theories with semiempirical methods , 2002 .

[67]  Investigation of TPP up-conversion lasing of stilbene derivatives , 2002 .

[68]  Martin Karplus,et al.  A Theoretical Analysis of the Proton and Hydride Transfer in Liver Alcohol Dehydrogenase (LADH) , 2002 .

[69]  Q. Cui,et al.  Kinetic isotope effects for concerted multiple proton transfer: a direct dynamics study of an active-site model of carbonic anhydrase II. , 2003, Journal of the American Chemical Society.

[70]  Sándor Suhai,et al.  SCC-DFTB-D study of intercalating carcinogens: Benzo(a)pyrene and its metabolites complexed with the G-C base pair , 2003 .

[71]  E. C. Lim,et al.  Evaluation of the Hartree−Fock Dispersion (HFD) Model as a Practical Tool for Probing Intermolecular Potentials of Small Aromatic Clusters: Comparison of the HFD and MP2 Intermolecular Potentials , 2003 .

[72]  M. Head‐Gordon,et al.  Long-range charge-transfer excited states in time-dependent density functional theory require non-local exchange , 2003 .

[73]  Guohui Li,et al.  What is so special about Arg 55 in the catalysis of cyclophilin A? insights from hybrid QM/MM simulations. , 2003, Journal of the American Chemical Society.

[74]  J. Hermans,et al.  Comparison of a QM/MM force field and molecular mechanics force fields in simulations of alanine and glycine “dipeptides” (Ace‐Ala‐Nme and Ace‐Gly‐Nme) in water in relation to the problem of modeling the unfolded peptide backbone in solution , 2003, Proteins.

[75]  S. Suhai,et al.  Structure and conformational flexibility of uracil: A comprehensive study of performance of the MP2, B3LYP and SCC-DFTB methods , 2003 .

[76]  Georg Jansen,et al.  The helium dimer potential from a combined density functional theory and symmetry-adapted perturbation theory approach using an exact exchange–correlation potential , 2003 .

[77]  Walter Thiel,et al.  Implementation of a general multireference configuration interaction procedure with analytic gradients in a semiempirical context using the graphical unitary group approach , 2003, J. Comput. Chem..

[78]  Frank Neese,et al.  A spectroscopy oriented configuration interaction procedure , 2003 .

[79]  Stefan Grimme,et al.  Substantial errors from time-dependent density functional theory for the calculation of excited states of large pi systems. , 2003, Chemphyschem : a European journal of chemical physics and physical chemistry.

[80]  Thomas Frauenheim,et al.  Modeling zinc in biomolecules with the self consistent charge‐density functional tight binding (SCC‐DFTB) method: Applications to structural and energetic analysis , 2003, J. Comput. Chem..

[81]  S. Suhai,et al.  Structure of Stacked Dimers of N-Methylated Watson–Crick Adenine–Thymine Base Pairs , 2003 .

[82]  P. Hyldgaard,et al.  Van der Waals density functional for layered structures. , 2003, Physical review letters.

[83]  Thomas Frauenheim,et al.  An approximate DFT method for QM/MM simulations of biological structures and processes , 2003 .

[84]  Xin Xu,et al.  The extended Perdew-Burke-Ernzerhof functional with improved accuracy for thermodynamic and electronic properties of molecular systems. , 2004, The Journal of chemical physics.

[85]  M. Head‐Gordon,et al.  Failure of time-dependent density functional theory for long-range charge-transfer excited states: the zincbacteriochlorin-bacteriochlorin and bacteriochlorophyll-spheroidene complexes. , 2004, Journal of the American Chemical Society.

[86]  N. Handy,et al.  A new hybrid exchange–correlation functional using the Coulomb-attenuating method (CAM-B3LYP) , 2004 .

[87]  Jeremy C. Smith,et al.  Mechanism of primary proton transfer in bacteriorhodopsin. , 2004, Structure.

[88]  Robert A. Wolkow,et al.  Application of 25 density functionals to dispersion-bound homomolecular dimers , 2004 .

[89]  Petros Koumoutsakos,et al.  Dispersion corrections to density functionals for water aromatic interactions. , 2004, The Journal of chemical physics.

[90]  M. Scheffler,et al.  On the Accuracy of DFT for Describing Hydrogen Bonds: Dependence on the Bond Directionality , 2004 .

[91]  M. Elstner,et al.  Fast QM/MM method and its application to molecular systems , 2004 .

[92]  Evert Jan Baerends,et al.  Asymptotic correction of the exchange-correlation kernel of time-dependent density functional theory for long-range charge-transfer excitations. , 2004, The Journal of chemical physics.

[93]  M Elstner,et al.  A global investigation of excited state surfaces within time-dependent density-functional response theory. , 2004, The Journal of chemical physics.

[94]  G. Scuseria,et al.  An ab Initio Study of Solid Nitromethane, HMX, RDX, and CL20: Successes and Failures of DFT , 2004 .

[95]  Stephan Irle,et al.  Analytical second-order geometrical derivatives of energy for the self-consistent-charge density-functional tight-binding method. , 2004, The Journal of chemical physics.

[96]  Key role of electrostatic interactions in bacteriorhodopsin proton transfer. , 2004, Journal of the American Chemical Society.

[97]  Keiji Morokuma,et al.  Systematic study of vibrational frequencies calculated with the self‐consistent charge density functional tight‐binding method , 2004, J. Comput. Chem..

[98]  Henryk A. Witek,et al.  Modeling vibrational spectra using the self-consistent charge density-functional tight-binding method. I. Raman spectra , 2004 .

[99]  A. Carlo,et al.  Atomistic theory of transport in organic and inorganic nanostructures , 2004 .

[100]  Donald G. Truhlar,et al.  Class IV Charge Model for the Self-Consistent Charge Density-Functional Tight-Binding Method , 2004 .

[101]  Stefan Grimme,et al.  Accurate description of van der Waals complexes by density functional theory including empirical corrections , 2004, J. Comput. Chem..

[102]  Anil Kumar,et al.  A theoretical study of structures and electron affinities of radical anions of guanine‐cytosine, adenine‐thymine, and hypoxanthine‐cytosine base pairs , 2004, J. Comput. Chem..

[103]  Marcus Elstner,et al.  The retinal conformation and its environment in rhodopsin in light of a new 2.2 A crystal structure. , 2004, Journal of molecular biology.

[104]  Markus Meuwly,et al.  Double proton transfer in the isolated and DNA-embedded guanine-cytosine base pair. , 2004, The Journal of chemical physics.

[105]  Xin Xu,et al.  From The Cover: The X3LYP extended density functional for accurate descriptions of nonbond interactions, spin states, and thermochemical properties. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[106]  S. Suhai,et al.  Amino acids and small peptides as building blocks for proteins: comparative theoretical and spectroscopic studies , 2004 .

[107]  Sławomir M Cybulski,et al.  Critical examination of the supermolecule density functional theory calculations of intermolecular interactions. , 2005, The Journal of chemical physics.

[108]  Quasiparticle energies for large molecules: A tight-binding-based Green's-function approach , 2004, cond-mat/0411024.

[109]  D. York,et al.  Benchmark calculations of proton affinities and gas-phase basicities of molecules important in the study of biological phosphoryl transfer. , 2005, Physical chemistry chemical physics : PCCP.

[110]  Bradley P. Dinte,et al.  Soft cohesive forces , 2005 .

[111]  Henrik Rydberg,et al.  Van der Waals Density Functional Theory with Applications , 2005 .

[112]  A. Becke,et al.  Exchange-hole dipole moment and the dispersion interaction. , 2005, The Journal of chemical physics.

[113]  M. Schütz,et al.  Density-functional theory-symmetry-adapted intermolecular perturbation theory with density fitting: a new efficient method to study intermolecular interaction energies. , 2005, The Journal of chemical physics.

[114]  M Elstner,et al.  Calculating absorption shifts for retinal proteins: computational challenges. , 2005, The journal of physical chemistry. B.

[115]  A. Becke,et al.  A post-Hartree-Fock model of intermolecular interactions. , 2005, The Journal of chemical physics.

[116]  M. Elstner,et al.  Validation of the density-functional based tight-binding approximation method for the calculation of reaction energies and other data. , 2005, The Journal of chemical physics.