Scratches from the Past: Inflationary Archaeology through Features in the Power Spectrum of Primordial Fluctuations

Inflation may provide unique insight into the physics at the highest available energy scales that cannot be replicated in any realistic terrestrial experiment. Features in the primordial power spectrum are generically predicted in a wide class of models of inflation and its alternatives, and are observationally one of the most overlooked channels for finding evidence for non-minimal inflationary models. Constraints from observations of the cosmic microwave background cover the widest range of feature frequencies, but the most sensitive constraints will come from future large-scale structure surveys that can measure the largest number of linear and quasi-linear modes.

Cora Dvorkin | Ryan E. Keeley | P. Daniel Meerburg | Eva Silverstein | Bradley R. Johnson | A. Myers | A. Slosar | M. Schmittfull | O. Lahav | W. Percival | C. Baccigalupi | J. Kneib | J. García-Bellido | A. Font-Ribera | A. Prakash | A. Ross | G. Rossi | L. Samushia | H. Seo | A. Slosar | M. Vargas-Magaña | Gong-Bo Zhao | A. Challinor | L. Page | J. Borrill | S. Hanany | R. Stompor | J. Bond | F. Piacentini | J. Ruhl | Z. Ahmed | R. Thakur | J. Carlstrom | A. Suzuki | N. Whitehorn | N. Battaglia | M. Kamionkowski | R. Hložek | P. Martini | R. Armstrong | E. Pierpaoli | Y. Duan | D. Huterer | T. Kisner | K. Koyama | A. Shafieloo | H. Shan | J. Ellison | M. Zaldarriaga | S. Foreman | M. Trodden | A. Nomerotski | L. Knox | M. Liguori | M. Tristram | F. Cyr-Racine | J. Gudmundsson | M. Lattanzi | Zhilei Xu | G. Starkman | L. Senatore | E. D. Valentino | M. Gerbino | S. Horiuchi | G. Puglisi | A. Schillaci | P. Timbie | M. Amin | D. Green | E. Silverstein | R. Flauger | L. McAllister | S. Ferraro | B. Ansarinejad | M. Niemack | D. Wands | J. C. Hill | E. Castorina | Z. Xianyu | L. Bleem | J. McMahon | E. Switzer | N. Gupta | W. L. K. Wu | A. Cooray | A. Vieregg | A. Tolley | K. Karkare | K. Masui | K. Bandura | L. Newburgh | E. Kovetz | P. Bull | K. Abazajian | B. Wallisch | P. Meerburg | N. Sehgal | T. Essinger-Hileman | B. Sherwin | E. Schaan | S. Simon | Julian B. Muñoz | D. Alonso | G. Fabbian | V. Gluscevic | N. Zhu | P. Adshead | C. Dvorkin | M. Loverde | L. Pogosian | M. Raveri | S. Watson | M. Penna-Lima | P. Motloch | Daniel Green | Anvze Slosar | Xingang Chen | Benjamin Wallisch | C. Byrnes | Xingang Chen | R. Khatri | J. Nagy | S. Koushiappas | Yi Wang | G. Palma | W. Xu | S. Yasini | Daniel Green | W. Handley | M. Ishak | G. Niz | Muntazir M. Abidi | S. Mukherjee | M. Demarteau | Joan M. Cohn | Joel Meyers | Hayden Lee | F. Bouchet | K. Douglass | Misao Sasaki | C. Umilta | C. Pryke | O. Doré | K. Górski | A. Gontcho

[1]  Xingang Chen Primordial Features as Evidence for Inflation , 2011, 1104.1323.

[2]  D. Baumann TASI Lectures on Inflation , 2009, 0907.5424.

[3]  G. W. Pratt,et al.  Planck 2015. XX. Constraints on inflation , 2015, 1502.02114.

[4]  Zhiqi Huang,et al.  Particle Production During Inflation: Observational Constraints and Signatures , 2009, 0909.0751.

[5]  Tarun Souradeep,et al.  Primordial power spectrum from WMAP , 2004 .

[6]  L. Verde,et al.  The future of primordial features with large-scale structure surveys , 2016, 1605.09365.

[7]  H. Peiris,et al.  Constraining monodromy inflation , 2013, 1303.2616.

[8]  R. Wijers,et al.  WMAP7 constraints on oscillations in the primordial power spectrum , 2011, 1109.5264.

[9]  M. Kamionkowski,et al.  Searching for oscillations in the primordial power spectrum with CMB and LSS data , 2018, Physical Review D.

[10]  A. Starobinsky Spectrum of adiabatic perturbations in the universe when there are singularities in the inflation potential , 1992 .

[11]  Xingang Chen,et al.  Standard Clock in primordial density perturbations and cosmic microwave background , 2014, 1404.1536.

[12]  Raphael Flauger,et al.  Oscillations in the CMB from axion monodromy inflation , 2009, 0907.2916.

[13]  E. Shellard,et al.  Polyspectra searches for sharp oscillatory features in cosmic microwave sky data , 2014, 1412.6152.

[14]  G. Smoot,et al.  Wiggly whipped inflation , 2014, 1405.2012.

[15]  L. Moscardini,et al.  Probing primordial features with future galaxy surveys , 2016, 1606.03747.

[16]  G. Smoot,et al.  Probing features in the primordial perturbation spectrum with large-scale structure data , 2017, 1710.10987.

[17]  D. Sapone,et al.  Constraints on inflation with LSS surveys: features in the primordial power spectrum , 2017, Journal of Cosmology and Astroparticle Physics.

[18]  A. Westphal,et al.  Drifting oscillations in axion monodromy , 2014, 1412.1814.

[19]  Jan Hamann,et al.  A non-parametric consistency test of the ΛCDM model with Planck CMB data , 2017, 1705.05234.

[20]  G. Palma Untangling features in the primordial spectra , 2014, 1412.5615.

[21]  T. Souradeep,et al.  Primordial power spectrum from Planck , 2014, 1406.4827.

[22]  M. Benetti,et al.  Bayesian analysis of inflationary features in Planck and SDSS data , 2016, 1604.08156.

[23]  Jinn-Ouk Gong,et al.  Features of heavy physics in the CMB power spectrum , 2010, 1010.3693.

[24]  J. Fergusson,et al.  CMB-S4 forecast on the primordial non-Gaussianity parameter of feature models , 2019, Physical Review D.

[25]  J. Hamann,et al.  Features and new physical scales in primordial observables: Theory and observation , 2015, 1505.01834.

[26]  Correlating correlation functions of primordial perturbations , 2014, 1401.4402.

[27]  Precision of inflaton potential reconstruction from CMB using the general slow-roll approximation , 2005, astro-ph/0505158.

[28]  Xingang Chen,et al.  Models of the Primordial Standard Clock , 2014, 1411.2349.

[29]  David N. Spergel,et al.  Searching for oscillations in the primordial power spectrum. II. Constraints from Planck data , 2013, 1308.3705.

[30]  Richard Easther,et al.  Inflationary perturbations from a potential with a step , 2001 .

[31]  George F. Smoot,et al.  Primordial features and Planck polarization , 2016, 1605.02106.

[32]  S. Leach Measuring the primordial power spectrum: principal component analysis of the cosmic microwave background , 2005, astro-ph/0506390.

[33]  E. P. S. Shellard,et al.  Combining power spectrum and bispectrum measurements to detect oscillatory features , 2014, 1410.5114.

[34]  L. McAllister,et al.  Inflation and String Theory , 2014, 1404.2601.

[35]  M. Bucher,et al.  Reconstructing the primordial power spectrum from the CMB , 2012, 1209.2147.

[36]  D. Green,et al.  Searching for light relics with large-scale structure , 2017, Journal of Cosmology and Astroparticle Physics.

[37]  M. Amin,et al.  Stochastic particle production in a de Sitter background , 2019, Journal of Cosmology and Astroparticle Physics.

[38]  T. Kitching,et al.  Exploring cosmic origins with CORE: Inflation , 2016, 1612.08270.

[39]  Generalized slow roll for noncanonical kinetic terms , 2011, 1104.4500.

[40]  J. Vázquez,et al.  Model selection applied to reconstruction of the Primordial Power Spectrum , 2012, 1203.1252.

[41]  Wayne Hu,et al.  Warp features in DBI inflation , 2012, 1207.2186.

[42]  G. W. Pratt,et al.  Planck 2013 results. XXII. Constraints on inflation , 2013, 1303.5082.

[43]  Evan J. Arena,et al.  Inflation and Early Dark Energy with a Stage II Hydrogen Intensity Mapping experiment , 2018, 1810.09572.

[44]  L. Senatore,et al.  Trapped Inflation , 2009, 0902.1006.

[45]  A. Ach'ucarro,et al.  Correlating features in the primordial spectra , 2012, 1211.5619.

[46]  Eugene A. Lim,et al.  Non-Gaussianity from Step Features in the Inflationary Potential , 2011, 1110.3050.

[47]  R. Flauger,et al.  Planck constraints on monodromy inflation , 2013, 1308.3736.

[48]  M. Kamionkowski,et al.  Oscillations in the inflaton potential , 2008, 0807.0322.

[49]  Alexander Westphal,et al.  Monodromy in the CMB: Gravity Waves and String Inflation , 2008, 0803.3085.

[50]  Richard Easther,et al.  The Knotted Sky I: Planck constraints on the primordial power spectrum , 2014, 1403.5849.

[51]  Wayne Hu,et al.  Inflationary steps in the Planck data , 2013, 1312.0946.

[52]  J. Hamann,et al.  Precise measurements of inflationary features with 21 cm observations , 2016, 1607.00817.

[53]  Cora Dvorkin,et al.  Inflationary versus reionization features from Planck 2015 data , 2018, Physical Review D.

[54]  Wayne Hu,et al.  Polarization predictions for inflationary CMB power spectrum features , 2014, 1411.5956.

[55]  R. Bean,et al.  Duality cascade in brane inflation , 2008, 0802.0491.

[56]  R. Flauger,et al.  Resonant non-gaussianity , 2010, 1002.0833.

[57]  Yi Wang,et al.  Quantum primordial standard clocks , 2015, 1509.03930.

[58]  Tarun Souradeep,et al.  Oscillations in the inflaton potential: Complete numerical treatment and comparison with the recent and forthcoming CMB datasets , 2011, 1106.2798.

[59]  A. Loeb,et al.  Unique Fingerprints of Alternatives to Inflation in the Primordial Power Spectrum. , 2018, Physical review letters.

[60]  Cora Dvorkin,et al.  Inflationary Features and Shifts in Cosmological Parameters From Planck 2015 Data , 2017 .

[61]  David N. Spergel,et al.  Searching for oscillations in the primordial power spectrum. I. Perturbative approach , 2013, 1308.3704.

[62]  U. Seljak,et al.  Perturbation theory, effective field theory, and oscillations in the power spectrum , 2015, 1509.02120.

[63]  Xingang Chen Primordial Non-Gaussianities from Inflation Models , 2010, 1002.1416.

[64]  L. Senatore,et al.  Productive interactions: heavy particles and non-Gaussianity , 2016, Journal of Cosmology and Astroparticle Physics.

[65]  Cora Dvorkin,et al.  CMB constraints on principal components of the inflaton potential , 2010 .

[66]  J. Silk,et al.  Large Scale Structure Forecast Constraints on Particle Production During Inflation , 2010, 1009.5858.

[67]  G. W. Pratt,et al.  Planck 2015 results - XI. CMB power spectra, likelihoods, and robustness of parameters , 2015, 1507.02704.

[68]  M. Amin,et al.  From wires to cosmology , 2015, 1512.02637.

[69]  J. Torrado,et al.  Localized correlated features in the CMB power spectrum and primordial bispectrum from a transient reduction in the speed of sound , 2013, 1311.2552.

[70]  Andrew Jaffe,et al.  PRISM (Polarized Radiation Imaging and Spectroscopy Mission): an extended white paper , 2013, 1310.1554.

[71]  D. Green Disorder in the early universe , 2014, 1409.6698.

[72]  B. Wandelt,et al.  Joint resonant CMB power spectrum and bispectrum estimation , 2015, 1510.01756.

[73]  Dominik J. Schwarz,et al.  Reconstruction of the primordial power spectrum from CMB data , 2011, 1105.5916.

[74]  Cora Dvorkin,et al.  Generalized slow roll approximation for large power spectrum features , 2010 .

[75]  J. Aumont,et al.  Planck2018 results , 2018, Astronomy & Astrophysics.

[76]  L. Moscardini,et al.  Probing primordial features with next-generation photometric and radio surveys , 2017, 1712.07425.

[77]  Xingang Chen Folded resonant non-Gaussianity in general single field inflation , 2010, 1008.2485.

[78]  M. Munchmeyer,et al.  The future of primordial features with 21 cm tomography , 2016, 1605.09364.

[79]  G. Smoot,et al.  Probing features in inflaton potential and reionization history with future CMB space observations , 2017, 1710.01205.

[80]  M. Halpern,et al.  The Primordial Inflation Explorer (PIXIE): a nulling polarimeter for cosmic microwave background observations , 2011, 1105.2044.

[81]  Richard Easther,et al.  Generation and characterization of large non-Gaussianities in single field inflation , 2008, 0801.3295.

[82]  S. Matarrese,et al.  The Effective Field Theory of Inflation Models with Sharp Features , 2013, 1307.3483.