Discovery and therapeutic potential of drugs that shift energy metabolism from mitochondrial respiration to glycolysis

[1]  G. Semenza Defining the role of hypoxia-inducible factor 1 in cancer biology and therapeutics , 2010, Oncogene.

[2]  Roland Nilsson,et al.  A Computational Screen for Regulators of Oxidative Phosphorylation Implicates SLIRP in Mitochondrial RNA Homeostasis , 2009, PLoS genetics.

[3]  S. Nadtochiy,et al.  Cardioprotection by metabolic shut-down and gradual wake-up. , 2009, Journal of molecular and cellular cardiology.

[4]  U. Dirnagl,et al.  Preconditioning and tolerance against cerebral ischaemia: from experimental strategies to clinical use , 2009, The Lancet Neurology.

[5]  A. Wojtovich,et al.  The complex II inhibitor atpenin A5 protects against cardiac ischemia-reperfusion injury via activation of mitochondrial KATP channels , 2009, Basic Research in Cardiology.

[6]  P. Carmeliet,et al.  Inhibition of oxygen sensors as a therapeutic strategy for ischaemic and inflammatory disease , 2009, Nature Reviews Drug Discovery.

[7]  N. Danial BAD: undertaker by night, candyman by day , 2008, Oncogene.

[8]  Shih-Chieh Lin,et al.  Induction of Pyruvate Dehydrogenase Kinase-3 by Hypoxia-inducible Factor-1 Promotes Metabolic Switch and Drug Resistance* , 2008, Journal of Biological Chemistry.

[9]  M. Deshmukh,et al.  Glucose Metabolism Inhibits Apoptosis in Neurons and Cancer Cells by Redox Inactivation of Cytochrome c , 2008, Nature Cell Biology.

[10]  P. Brookes,et al.  The endogenous mitochondrial complex II inhibitor malonate regulates mitochondrial ATP-sensitive potassium channels: implications for ischemic preconditioning. , 2008, Biochimica et biophysica acta.

[11]  W. Kaelin,et al.  Oxygen sensing by metazoans: the central role of the HIF hydroxylase pathway. , 2008, Molecular cell.

[12]  Stuart L. Schreiber,et al.  Large-scale chemical dissection of mitochondrial function , 2008, Nature Biotechnology.

[13]  Robert A. Harris,et al.  Deficiency or inhibition of oxygen sensor Phd1 induces hypoxia tolerance by reprogramming basal metabolism , 2008, Nature Genetics.

[14]  R. Deberardinis,et al.  Beyond aerobic glycolysis: Transformed cells can engage in glutamine metabolism that exceeds the requirement for protein and nucleotide synthesis , 2007, Proceedings of the National Academy of Sciences.

[15]  R. Geocadin,et al.  Therapeutic Hypothermia for Global and Focal Ischemic Brain Injury—A Cool Way to Improve Neurologic Outcomes , 2007, The neurologist.

[16]  Yvonne Will,et al.  Circumventing the Crabtree effect: replacing media glucose with galactose increases susceptibility of HepG2 cells to mitochondrial toxicants. , 2007, Toxicological sciences : an official journal of the Society of Toxicology.

[17]  G. Semenza,et al.  HIF-1 Regulates Cytochrome Oxidase Subunits to Optimize Efficiency of Respiration in Hypoxic Cells , 2007, Cell.

[18]  J. Ramirez,et al.  Hypoxia tolerance in mammals and birds: from the wilderness to the clinic. , 2007, Annual review of physiology.

[19]  J. Pouysségur,et al.  Harnessing the hypoxia-inducible factor in cancer and ischemic disease. , 2007, Biochemical pharmacology.

[20]  M. Renan,et al.  Can radiation-induced apoptosis be modulated by inhibitors of energy metabolism? , 2007, International journal of radiation biology.

[21]  J. Golenser,et al.  Current perspectives on the mechanism of action of artemisinins. , 2006, International journal for parasitology.

[22]  Anne E Carpenter,et al.  CellProfiler: image analysis software for identifying and quantifying cell phenotypes , 2006, Genome Biology.

[23]  K. Eckardt,et al.  Preconditional activation of hypoxia-inducible factors ameliorates ischemic acute renal failure. , 2006, Journal of the American Society of Nephrology : JASN.

[24]  V. Regitz-Zagrosek,et al.  Stabilization of hypoxia inducible factor rather than modulation of collagen metabolism improves cardiac function after acute myocardial infarction in rats , 2006, European journal of heart failure.

[25]  J. Gidday Cerebral preconditioning and ischaemic tolerance , 2006, Nature Reviews Neuroscience.

[26]  S. Nadtochiy,et al.  Different mechanisms of mitochondrial proton leak in ischaemia/reperfusion injury and preconditioning: implications for pathology and cardioprotection. , 2006, The Biochemical journal.

[27]  G. Semenza,et al.  HIF-1-mediated expression of pyruvate dehydrogenase kinase: a metabolic switch required for cellular adaptation to hypoxia. , 2006, Cell metabolism.

[28]  N. Denko,et al.  HIF-1 mediates adaptation to hypoxia by actively downregulating mitochondrial oxygen consumption. , 2006, Cell metabolism.

[29]  C. Hoppel,et al.  Blockade of Electron Transport during Ischemia Protects Cardiac Mitochondria* , 2004, Journal of Biological Chemistry.

[30]  R. Ratan,et al.  Translation of Ischemic Preconditioning to the Patient: Prolyl Hydroxylase Inhibition and Hypoxia Inducible Factor-1 as Novel Targets for Stroke Therapy , 2004, Stroke.

[31]  M. Riepe,et al.  Graded reoxygenation with chemical inhibition of oxidative phosphorylation improves posthypoxic recovery in murine hippocampal slices , 2004, Journal of neuroscience research.

[32]  Taesoo Kim,et al.  Modification of glycolysis affects cell sensitivity to apoptosis induced by oxidative stress and mediated by mitochondria. , 2004, Biochemical and biophysical research communications.

[33]  T. Lovenberg,et al.  Behavioral characterization of mice lacking histamine H(3) receptors. , 2002, Molecular pharmacology.

[34]  K. Nozaki,et al.  3-Nitropropionic acid induces ischemic tolerance in gerbil hippocampus in vivo , 1999, Neuroscience Letters.

[35]  H. Nakase,et al.  Increased Hypoxic Tolerance by Chemical Inhibition of Oxidative Phosphorylation: “Chemical Preconditioning” , 1997, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[36]  V. Mootha,et al.  Maximum oxidative phosphorylation capacity of the mammalian heart. , 1997, The American journal of physiology.

[37]  A. Scialli,et al.  The developmental toxicity of the H1 histamine antagonists. , 1996, Reproductive toxicology.

[38]  C. Piantadosi,et al.  Mitochondrial generation of reactive oxygen species after brain ischemia in the rat. , 1996, Stroke.

[39]  K. Onodera,et al.  Effects of thioperamide, a histamine H3-receptor antagonist, on a scopolamine-induced learning deficit using an elevated plus-maze test in mice. , 1995, Life sciences.

[40]  D. Wallace,et al.  Selective killing of cells with oxidative defects in galactose medium: A screening test for affected patient fibroblasts , 1992, Journal of Inherited Metabolic Disease.

[41]  D. Wallace,et al.  Nonviability of cells with oxidative defects in galactose medium: a screening test for affected patient fibroblasts. , 1992, Biochemical medicine and metabolic biology.

[42]  L. Reitzer,et al.  Evidence that glutamine, not sugar, is the major energy source for cultured HeLa cells. , 1979, The Journal of biological chemistry.

[43]  J. Puigdevall,et al.  Experimental teratology with Meclozine. , 1966, Medicina et pharmacologia experimentalis. International journal of experimental medicine.

[44]  O. Warburg [Origin of cancer cells]. , 1956, Oncologia.

[45]  C. Hoppel,et al.  Modulation of electron transport protects cardiac mitochondria and decreases myocardial injury during ischemia and reperfusion. , 2007, American journal of physiology. Cell physiology.

[46]  Min Wu,et al.  Multiparameter metabolic analysis reveals a close link between attenuated mitochondrial bioenergetic function and enhanced glycolysis dependency in human tumor cells. , 2007, American journal of physiology. Cell physiology.

[47]  Sébastien Bonnet,et al.  A mitochondria-K+ channel axis is suppressed in cancer and its normalization promotes apoptosis and inhibits cancer growth. , 2007, Cancer cell.

[48]  M. Leider Goodman & Gilman's The Pharmacological Basis of Therapeutics , 1985 .