Multi-target localization using frequency diverse coprime arrays with coprime frequency offsets

The performance of the frequency diverse array (FDA) radar is fundamentally limited by the geometry of the array and the frequency offset. In this paper, we overcome this limitation by introducing a novel sparsity-based multi-target localization approach incorporating both coprime array and coprime frequency offset. The covariance matrix of the received signals corresponding to all sensors and employed frequencies is formulated to generate a space-frequency virtual difference coarrays. The proposed approach enables the localization of up to O(M2 N2) targets using O(M + N) physical sensors with O(M + N) frequencies for a coprime pair of M and N. The joint DOA and range estimation is cast as a sparse reconstruction problem and solved using the complex multi-task Bayesian compressive sensing technique.

[1]  David L Donoho,et al.  Compressed sensing , 2006, IEEE Transactions on Information Theory.

[2]  Wen-Qin Wang,et al.  Frequency Diverse Array Antenna: New Opportunities , 2015, IEEE Antennas and Propagation Magazine.

[3]  N. Alsindi,et al.  Geolocation Techniques: Principles and Applications , 2012 .

[4]  David Ribas Romagós Underwater slam for structured environments using an imaging sonar , 2008 .

[5]  Moeness G. Amin,et al.  Principles and Techniques of RFID Positioning , 2010 .

[6]  Moeness G. Amin,et al.  DOA estimation exploiting coprime frequencies , 2014, Sensing Technologies + Applications.

[7]  Joel A. Tropp,et al.  Signal Recovery From Random Measurements Via Orthogonal Matching Pursuit , 2007, IEEE Transactions on Information Theory.

[8]  Baoju Zhang,et al.  Spectrum efficiency of nested sparse sampling and coprime sampling , 2013, EURASIP Journal on Wireless Communications and Networking.

[9]  Richard Klemm,et al.  Space-time adaptive processing : principles and applications , 1998 .

[10]  P. P. Vaidyanathan,et al.  Coprime arrays and samplers for space-time adaptive processing , 2015, 2015 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[11]  P. Antonik,et al.  An investigation of a frequency diverse array , 2009 .

[12]  Yimin Zhang,et al.  Time-Frequency Analysis for the Localization of Multiple Moving Targets Using Dual-Frequency Radars , 2008, IEEE Signal Processing Letters.

[13]  Wen-Qin Wang,et al.  Transmit Subaperturing for Range and Angle Estimation in Frequency Diverse Array Radar , 2014, IEEE Transactions on Signal Processing.

[14]  C.J. Baker,et al.  Frequency diverse array radars , 2006, 2006 IEEE Conference on Radar.

[15]  David B. Dunson,et al.  Multitask Compressive Sensing , 2009, IEEE Transactions on Signal Processing.

[16]  Braham Himed,et al.  Complex multitask Bayesian compressive sensing , 2014, 2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[17]  Qiong Wu,et al.  Coprime sampling for nonstationary signal in radar signal processing , 2013, EURASIP J. Wirel. Commun. Netw..

[18]  M. Seçmen,et al.  Frequency Diverse Array Antenna with Periodic Time Modulated Pattern in Range and Angle , 2007, 2007 IEEE Radar Conference.

[19]  Wen-Qin Wang,et al.  Nonuniform Frequency Diverse Array for Range-Angle Imaging of Targets , 2014, IEEE Sensors Journal.

[20]  J. Tabrikian,et al.  Target Detection and Localization Using MIMO Radars and Sonars , 2006, IEEE Transactions on Signal Processing.

[21]  Moeness G. Amin,et al.  Localization and Tracking of Passive RFID Tags Based on Direction Estimation , 2007 .

[22]  Braham Himed,et al.  DOA estimation using a sparse uniform linear array with two CW signals of co-prime frequencies , 2013, 2013 5th IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP).

[23]  Jun Li,et al.  Multitarget Identification and Localization Using Bistatic MIMO Radar Systems , 2008, EURASIP J. Adv. Signal Process..

[24]  Yimin Zhang,et al.  Generalized Coprime Array Configurations for Direction-of-Arrival Estimation , 2015, IEEE Transactions on Signal Processing.

[25]  Kaveh Pahlavan,et al.  Localization Algorithms and Strategies for Wireless Sensor Networks: Monitoring and Surveillance Techniques for Target Tracking , 2009 .

[26]  Braham Himed,et al.  Target localization in a multi-static passive radar system through convex optimization , 2014, Signal Process..

[27]  Michael E. Tipping Sparse Bayesian Learning and the Relevance Vector Machine , 2001, J. Mach. Learn. Res..

[28]  Yimin Zhang,et al.  Sparsity-based multi-target localization exploiting multi-frequency coprime array , 2015, 2015 IEEE China Summit and International Conference on Signal and Information Processing (ChinaSIP).

[29]  Yimin D. Zhang,et al.  High-resolution frequency estimation using generalized coprime sampling , 2015, Commercial + Scientific Sensing and Imaging.

[30]  Lawrence Carin,et al.  Bayesian Compressive Sensing , 2008, IEEE Transactions on Signal Processing.

[31]  R. T. Hoctor,et al.  The unifying role of the coarray in aperture synthesis for coherent and incoherent imaging , 1990, Proc. IEEE.

[32]  Braham Himed,et al.  Multi-Task Bayesian Compressive Sensing Exploiting Intra-Task Dependency , 2015, IEEE Signal Processing Letters.

[33]  Abdelhak M. Zoubir,et al.  Generalized coprime sampling of Toeplitz matrices , 2016, 2016 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[34]  John R. Buck,et al.  Extending coprime sensor arrays to achieve the peak side lobe height of a full uniform linear array , 2014, EURASIP J. Adv. Signal Process..

[35]  P. Vaidyanathan,et al.  Coprime sampling and the music algorithm , 2011, 2011 Digital Signal Processing and Signal Processing Education Meeting (DSP/SPE).

[36]  P. P. Vaidyanathan,et al.  Sparse Sensing With Co-Prime Samplers and Arrays , 2011, IEEE Transactions on Signal Processing.

[37]  Michael A. Saunders,et al.  Atomic Decomposition by Basis Pursuit , 1998, SIAM J. Sci. Comput..