A Piecewise Linear Strategy of Target Detection for Multispectral/Hyperspectral Image

The linear operator has been widely used to detect targets of interest in multispectral/hyperspectral images, and is usually able to achieve good performance when the target is linearly separable from the background. However, when dealing with a complex scene, it is hard to find a single projection direction, along which the target can be well distinguished from all the background objects. Therefore, we propose a piecewise linear strategy (PLS) for target detection, which is based on the assumption that the desired target is generally linearly separable from each background object. PLS first divides the whole background into several partitions, and then detects the individual target for each partition by using a commonly used linear detector. Experiments with simulated and real-world multispectral/hyperspectral images show that PLS can acquire a nonlinear detection result and can outperform state-of-the-art target detection operators.

[1]  Nasser M. Nasrabadi,et al.  Hyperspectral Target Detection : An Overview of Current and Future Challenges , 2014, IEEE Signal Processing Magazine.

[2]  Dimitris G. Manolakis,et al.  Is there a best hyperspectral detection algorithm? , 2009, Defense + Commercial Sensing.

[3]  Jan Larsen,et al.  Unmixing of Hyperspectral Images using Bayesian Non-negative Matrix Factorization with Volume Prior , 2011, J. Signal Process. Syst..

[4]  Mark L. G. Althouse,et al.  Least squares subspace projection approach to mixed pixel classification for hyperspectral images , 1998, IEEE Trans. Geosci. Remote. Sens..

[5]  Ting Wang,et al.  A Background Self-Learning Framework for Unstructured Target Detectors , 2013, IEEE Geoscience and Remote Sensing Letters.

[6]  Pramod K. Varshney,et al.  ICA mixture model based unsupervised classification of hyperspectral imagery , 2002, Applied Imagery Pattern Recognition Workshop, 2002. Proceedings..

[7]  Dimitris G. Manolakis,et al.  Hyperspectral detection algorithms: use covariances or subspaces? , 2009, Optical Engineering + Applications.

[8]  Alan P. Schaum,et al.  Application of stochastic mixing models to hyperspectral detection problems , 1997, Defense, Security, and Sensing.

[9]  Chein-I Chang,et al.  Fully constrained least squares linear spectral mixture analysis method for material quantification in hyperspectral imagery , 2001, IEEE Trans. Geosci. Remote. Sens..

[10]  Kang Sun,et al.  Clever eye algorithm for target detection of remote sensing imagery , 2016 .

[11]  Bo Du,et al.  A Kernel-Based Target-Constrained Interference-Minimized Filter for Hyperspectral Sub-Pixel Target Detection , 2013, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[12]  Kenneth W. Bauer,et al.  Clustering hyperspectral imagery for improved adaptive matched filter performance , 2013 .

[13]  Edward A. Ashton,et al.  Detection of subpixel anomalies in multispectral infrared imagery using an adaptive Bayesian classifier , 1998, IEEE Trans. Geosci. Remote. Sens..

[14]  Chein-I Chang,et al.  Random N-Finder (N-FINDR) Endmember Extraction Algorithms for Hyperspectral Imagery , 2011, IEEE Transactions on Image Processing.

[15]  Daniel R. Fuhrmann,et al.  A CFAR adaptive matched filter detector , 1992 .

[16]  J. Boardman,et al.  Mapping target signatures via partial unmixing of AVIRIS data: in Summaries , 1995 .

[17]  Heesung Kwon,et al.  Kernel spectral matched filter for hyperspectral target detection , 2005, Proceedings. (ICASSP '05). IEEE International Conference on Acoustics, Speech, and Signal Processing, 2005..

[18]  Dimitris G. Manolakis,et al.  Hyperspectral matched filter with false-alarm mitigation , 2012 .

[19]  Heesung Kwon,et al.  Kernel orthogonal subspace projection for hyperspectral signal classification , 2005, IEEE Transactions on Geoscience and Remote Sensing.

[20]  Naoto Yokoya,et al.  Coupled Nonnegative Matrix Factorization Unmixing for Hyperspectral and Multispectral Data Fusion , 2012, IEEE Transactions on Geoscience and Remote Sensing.

[21]  James Theiler,et al.  Beyond the adaptive matched filter: nonlinear detectors for weak signals in high-dimensional clutter , 2007, SPIE Defense + Commercial Sensing.

[22]  Paul S. Bradley,et al.  Refining Initial Points for K-Means Clustering , 1998, ICML.

[23]  Heesung Kwon,et al.  Kernel Spectral Matched Filter for Hyperspectral Imagery , 2007, International Journal of Computer Vision.

[24]  Chein-I Chang,et al.  Kernel-based constrained energy minimization (K-CEM) , 2008, SPIE Defense + Commercial Sensing.

[25]  Fred A. Kruse,et al.  Analysis of Imaging Spectrometer Data Using $N$ -Dimensional Geometry and a Mixture-Tuned Matched Filtering Approach , 2011, IEEE Transactions on Geoscience and Remote Sensing.

[26]  Sunil Narumalani,et al.  A Comparative Evaluation of ISODATA and Spectral Angle Mapping for the Detection of Saltcedar Using Airborne Hyperspectral Imagery , 2006 .

[27]  Mario Winter,et al.  N-FINDR: an algorithm for fast autonomous spectral end-member determination in hyperspectral data , 1999, Optics & Photonics.

[28]  Amy E. Parker Williams,et al.  Estimation of leafy spurge cover from hyperspectral imagery using mixture tuned matched filtering , 2002 .

[29]  Mireille Guillaume,et al.  Underwater Target Detection With Hyperspectral Data: Solutions for Both Known and Unknown Water Quality , 2012, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[30]  Nancy F. Glenn,et al.  Subpixel abundance estimates in mixture-tuned matched filtering classifications of leafy spurge (Euphorbia esula L.) , 2009 .

[31]  James Theiler,et al.  Clustering to improve matched filter detection of weak gas plumes in hyperspectral thermal imagery , 2001, IEEE Trans. Geosci. Remote. Sens..

[32]  Dimitris G. Manolakis,et al.  Detection algorithms for hyperspectral imaging applications , 2002, IEEE Signal Process. Mag..

[33]  Ramanathan Sugumaran,et al.  Classification of Iowa wetlands using an airborne hyperspectral image: a comparison of the spectral angle mapper classifier and an object-oriented approach , 2005 .

[34]  W. Farrand Mapping the distribution of mine tailings in the Coeur d'Alene River Valley, Idaho, through the use of a constrained energy minimization technique , 1997 .

[35]  Chein-I Chang,et al.  Hyperspectral image classification and dimensionality reduction: an orthogonal subspace projection approach , 1994, IEEE Trans. Geosci. Remote. Sens..

[36]  Qian Du,et al.  A comparative study for orthogonal subspace projection and constrained energy minimization , 2003, IEEE Trans. Geosci. Remote. Sens..

[37]  Chein-I Chang,et al.  Orthogonal subspace projection (OSP) revisited: a comprehensive study and analysis , 2005, IEEE Trans. Geosci. Remote. Sens..