Perturbation-Induced False Starts as a Test of the Jirsa-Kelso Excitator Model

One difference between the excitator model and other theoretical models of coordination is the mechanism of discrete movement initiation. In addition to an imperative signal common to all discrete movement initiation, the excitator model proposes that movements are initiated when a threshold element in state space, the so-called separatrix, is crossed as a consequence of stimulation or random fluctuations. The existence of a separatrix predicts that false starts will be caused by mechanical perturbations and that they depend on the perturbation's direction. The authors tested this prediction in a reaction-time task to an auditory stimulus. Participants applied perturbations in the direction of motion (i.e., index finger flexion) or opposed to the motion prior to the stimulus on 1/4 of the trials. The authors found false starts in 34% and 9% of trials following flexion perturbations and extension perturbations, respectively, as compared with only 2% of trials without perturbations, confirming a unique prediction of the excitator model.

[1]  M. Latash Control of human movement , 1993 .

[2]  J. A. Scott Kelso,et al.  Reaction-anticipation transitions in human perception-action patterns , 1996 .

[3]  A. G. Feldman Superposition of motor programs—I. Rhythmic forearm movements in man , 1980, Neuroscience.

[4]  A. G. Feldman Superposition of motor programs—II. Rapid forearm flexion in man , 1980, Neuroscience.

[5]  Scott T. Grafton,et al.  Cortical control of movement , 1994, Annals of neurology.

[6]  Viktor K. Jirsa,et al.  Distinct Timing Mechanisms Produce Discrete and Continuous Movements , 2008, PLoS Comput. Biol..

[7]  W. Prinz,et al.  Perceptual basis of bimanual coordination , 2001, Nature.

[8]  L Proteau,et al.  Determining movement onsets from temporal series. , 1993, Journal of motor behavior.

[9]  A. Hodgkin,et al.  A quantitative description of membrane current and its application to conduction and excitation in nerve , 1990 .

[10]  L. Aiken Reaction Time and the Expectancy Hypothesis , 1964, Perceptual and motor skills.

[11]  Michael Günther,et al.  Synthesis of two-dimensional human walking: a test of the lambda-model , 2003, Biol. Cybern..

[12]  Viktor K. Jirsa,et al.  Human trajectory formation: Taxonomy of movement based on phase flow topology , 2008 .

[13]  R. FitzHugh Impulses and Physiological States in Theoretical Models of Nerve Membrane. , 1961, Biophysical journal.

[14]  J. S. Scott Kelso,et al.  Haptic information stabilizes and destabilizes coordination dynamics , 2001, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[15]  O. Mowrer Preparatory set (expectancy) - some methods of measurement. , 1940 .

[16]  J. Kelso,et al.  The informational character of self-organized coordination dynamics , 1994 .

[17]  Franz Mechsner,et al.  A Psychological Approach to Human Voluntary Movements , 2004 .

[18]  Mark L. Latash,et al.  Independent control of joint stiffness in the framework of the equilibrium-point hypothesis , 1993, Biological Cybernetics.

[19]  E. Bizzi,et al.  Mechanical properties of muscles: Implications for motor control , 1982, Trends in Neurosciences.

[20]  R. Shaw,et al.  Could Optical ‘Pushes’ Be Inertial Forces? A Geometro-Dynamical Hypothesis , 2007 .

[21]  E. Bizzi,et al.  Characteristics of motor programs underlying arm movements in monkeys. , 1979, Journal of neurophysiology.

[22]  A. G. Feldman,et al.  Merging different motor patterns: Coordination between rhythmical and discrete single-joint movements , 2004, Experimental Brain Research.

[23]  J. Kelso,et al.  Nonequilibrium phase transitions in coordinated biological motion: critical fluctuations , 1986 .

[24]  J. NAGUMOt,et al.  An Active Pulse Transmission Line Simulating Nerve Axon , 2006 .

[25]  J. Kelso,et al.  The Excitator as a Minimal Model for the Coordination Dynamics of Discrete and Rhythmic Movement Generation , 2005, Journal of motor behavior.

[26]  宇野 洋二,et al.  Formation and control of optimal trajectory in human multijoint arm movement : minimum torque-change model , 1988 .

[27]  G. Schöner,et al.  A dynamic theory of coordination of discrete movement , 1990, Biological Cybernetics.

[28]  Michael T. Turvey,et al.  Dynamics of human intersegmental coordination: Theory and research , 1998 .

[29]  J. Kelso,et al.  Skilled actions: a task-dynamic approach. , 1987, Psychological review.

[30]  R Plamondon,et al.  Speed/accuracy trade-offs in target-directed movements , 1997, Behavioral and Brain Sciences.

[31]  A. G. Feldman,et al.  The origin and use of positional frames of reference in motor control , 1995, Behavioral and Brain Sciences.

[32]  J. Kelso Motor control mechanisms underlying human movement reproduction. , 1977, Journal of experimental psychology. Human perception and performance.

[33]  Dylan F. Cooke,et al.  The Cortical Control of Movement Revisited , 2002, Neuron.

[34]  S. Riek,et al.  The influence of joint position on the dynamics of perception-action coupling , 1998, Experimental Brain Research.

[35]  R. Davis,et al.  The Role of “Attention” in the Psychological Refractory Period , 1959 .

[36]  Stephan Riek,et al.  Neuromuscular-skeletal constraints upon the dynamics of unimanual and bimanual coordination , 2000, Experimental Brain Research.

[37]  E. Bizzi,et al.  Mechanisms underlying achievement of final head position. , 1976, Journal of neurophysiology.

[38]  J. Kelso,et al.  Exploring a vibratory systems analysis of human movement production. , 1980, Journal of neurophysiology.

[39]  P. Fitts The information capacity of the human motor system in controlling the amplitude of movement. , 1954, Journal of experimental psychology.

[40]  N. Hogan,et al.  On rhythmic and discrete movements: reflections, definitions and implications for motor control , 2007, Experimental Brain Research.

[41]  R. Huerta,et al.  Heteroclinic synchronization: ultrasubharmonic locking. , 2006, Physical review letters.

[42]  Anatol G. Feldman,et al.  Guiding Movements without Redundancy Problems , 2004 .

[43]  R. Schmidt,et al.  A test of the adams-creamer decay hypothesis for the timing of motor responses. , 1970, Journal of motor behavior.

[44]  J. Valls-Solé,et al.  Reaction time and acoustic startle in normal human subjects , 1995, Neuroscience Letters.

[45]  S. Schaal,et al.  Rhythmic arm movement is not discrete , 2004, Nature Neuroscience.

[46]  E. Todorov Optimality principles in sensorimotor control , 2004, Nature Neuroscience.

[47]  P. Morasso Spatial control of arm movements , 2004, Experimental Brain Research.

[48]  E. Bizzi,et al.  Processes controlling arm movements in monkeys. , 1978, Science.

[49]  Roger W. Brockett,et al.  On the computer control of movement , 1988, Proceedings. 1988 IEEE International Conference on Robotics and Automation.

[50]  James A. Hendler,et al.  Languages, behaviors, hybrid architectures, and motion control , 1998 .

[51]  H. Hatze,et al.  Energy-optimal controls in the mammalian neuromuscular system , 1977, Biological Cybernetics.

[52]  G. Calvert Crossmodal processing in the human brain: insights from functional neuroimaging studies. , 2001, Cerebral cortex.

[53]  R. Schmidt,et al.  Errors in motor responding, "rapid" corrections, and false anticipations. , 1977, Journal of motor behavior.

[54]  C Collet,et al.  Strategic Aspects of Reaction Time in World-Class Sprinters , 1999, Perceptual and motor skills.

[55]  T. Flash,et al.  The coordination of arm movements: an experimentally confirmed mathematical model , 1985, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[56]  Stefan Schaal,et al.  Interaction of rhythmic and discrete pattern generators in single-joint movements , 2000 .

[57]  Daniel M. Wolpert,et al.  Making smooth moves , 2022 .

[58]  J. Tresilian,et al.  Effects of acoustic startle stimuli on interceptive action , 2006, Neuroscience.

[59]  J. Rothwell,et al.  Patterned ballistic movements triggered by a startle in healthy humans , 1999, The Journal of physiology.

[60]  Seville Chapman Catching a Baseball , 1968 .

[61]  W. L. Nelson Physical principles for economies of skilled movements , 1983, Biological Cybernetics.

[62]  G. Ermentrout Dynamic patterns: The self-organization of brain and behavior , 1997 .