Local Moment Instability of Os in Honeycomb Li2.15Os0.85O3

[1]  H. Takagi,et al.  Solution of the heavily stacking faulted crystal structure of the honeycomb iridate H3LiIr2O6. , 2017, Dalton transactions.

[2]  A. Banerjee,et al.  Neutron scattering in the proximate quantum spin liquid α-RuCl3 , 2017, Science.

[3]  R. Valentí,et al.  Electronic excitations in γ-Li2IrO3 , 2016, 1609.03316.

[4]  Li Ying,et al.  Electronic excitations in .GAMMA.-Li2IrO3 , 2017 .

[5]  A. Manivannan,et al.  Electrochemical Investigations on the Effect of Mg-Substitution in Li2MnO3Cathode , 2017 .

[6]  A. P. Ramirez,et al.  Charge transfer instability in a mixed Ir/Rh honeycomb lattice in Li 2 Ir 1- x Rh x O 3 solid solution , 2016 .

[7]  Fang Liu,et al.  Recent developments in the ABINIT software package , 2016, Comput. Phys. Commun..

[8]  David D. O'Regan,et al.  Optimization of constrained density functional theory , 2016, 1603.03428.

[9]  W. Pickett,et al.  Interplay between spin-orbit coupling and strong correlation effects: Comparison of the three osmate double perovskites Ba 2 A OsO 6 ( A = Na , Ca, Y) , 2015, 1510.01719.

[10]  B. Kim,et al.  Insulating nature of Na 2 IrO 3 : Mott-type or Slater-type , 2015, 1507.00658.

[11]  J. van den Brink,et al.  Strongly frustrated triangular spin lattice emerging from triplet dimer formation in honeycomb Li2IrO3 , 2014, Nature Communications.

[12]  J. Tarascon,et al.  Visualization of O-O peroxo-like dimers in high-capacity layered oxides for Li-ion batteries , 2015, Science.

[13]  J. van den Brink,et al.  Strong magnetic frustration and anti-site disorder causing spin-glass behavior in honeycomb Li2RhO3 , 2015, Scientific Reports.

[14]  Ji Feng,et al.  First-Principles Study of the Magnetic Structure of Na2IrO3. , 2015, Physical review letters.

[15]  M. Veenendaal,et al.  Fragility of ferromagnetic double exchange interactions and pressure tuning of magnetism in 3 d -5 d double perovskite Sr 2 FeOsO 6 , 2015, 1501.07889.

[16]  H. Takagi,et al.  Hyperhoneycomb Iridate β-Li2IrO3 as a platform for Kitaev magnetism. , 2014, Physical review letters.

[17]  F. Ye,et al.  Lattice-Tuned Magnetism of Ru$^{4+}$(4d$^{4})$ Ions in Single-Crystals of the Layered Honeycomb Ruthenates: Li$_{2}$RuO$_{3}$ and Na$_{2}$RuO$_{3}$ , 2014, 1408.5441.

[18]  R. Arita,et al.  First-principles study of the honeycomb-lattice iridates Na2IrO3 in the presence of strong spin-orbit interaction and electron correlations. , 2014, Physical review letters.

[19]  A. Wattiaux,et al.  Synthesis and characterization of O3-Na3LiFeSbO6: A new honeycomb ordered layered oxide , 2014 .

[20]  R. Valentí,et al.  Effect of isoelectronic doping on the honeycomb-lattice iridate A 2 IrO 3 , 2013, 1312.0815.

[21]  H. Hosono,et al.  Structural, magnetic, and electrical properties of Li2Ir1-xRuxO3 , 2013, 1311.7317.

[22]  J. Pekola,et al.  Tunneling and relaxation of single quasiparticles in a normal-superconductor-normal single-electron transistor , 2013, 1310.6508.

[23]  F. Ye,et al.  Li2RuO3 and Na2RuO3 , 2014 .

[24]  G. Khaliullin Excitonic magnetism in Van Vleck-type d4 Mott insulators. , 2013, Physical review letters.

[25]  R. Valentí,et al.  Origin of the insulating state in honeycomb iridates and rhodates , 2013, 1304.2258.

[26]  Seongsu Lee,et al.  Antiferromagnetic ordering in Li2MnO3 single crystals with a two-dimensional honeycomb lattice , 2012, Journal of physics. Condensed matter : an Institute of Physics journal.

[27]  Seongsu Lee,et al.  Antiferromagnetic Ordering in Li 2 MnO 3 Single Crystal with two Dimensional Honeycomb Lattice , 2012 .

[28]  R. Valentí,et al.  Na2IrO3 as a molecular orbital crystal. , 2012, Physical review letters.

[29]  L. V. Viktorov,et al.  Photo- and radioluminescence of lithium hafnate Li2HfO3 , 2012 .

[30]  Yogesh Singh,et al.  Relevance of the Heisenberg-Kitaev model for the honeycomb lattice iridates A2IrO3. , 2011, Physical review letters.

[31]  N. M. Souza-Neto,et al.  Orbital magnetism and spin-orbit effects in the electronic structure of BaIrO3. , 2010, Physical review letters.

[32]  Y. Singh,et al.  Antiferromagnetic Mott insulating state in single crystals of the hexagonal lattice material Na2IrO3 , 2010, 1006.0437.

[33]  L. Dubrovinsky,et al.  Pressure-induced isostructural phase transformation in γ -B 28 , 2010 .

[34]  Stefan Goedecker,et al.  ABINIT: First-principles approach to material and nanosystem properties , 2009, Comput. Phys. Commun..

[35]  C. Delmas,et al.  Reinvestigation of Li2MnO3 Structure: Electron Diffraction and High Resolution TEM , 2009 .

[36]  H. Verweij,et al.  Structure and properties of ordered Li2IrO3 and Li2PtO3 , 2008 .

[37]  F. Jollet,et al.  γandβcerium:LDA+Ucalculations of ground-state parameters , 2008 .

[38]  Xavier Gonze,et al.  Implementation of the projector augmented-wave method in the ABINIT code: Application to the study of iron under pressure , 2008 .

[39]  G. Aromí,et al.  Synthesis of 3d metallic single-molecule magnets , 2006 .

[40]  Alexei Kitaev,et al.  Anyons in an exactly solved model and beyond , 2005, cond-mat/0506438.

[41]  Y. Meng,et al.  High-resolution X-ray diffraction, DIFFaX, NMR and first principles study of disorder in the Li2MnO3-Li[Ni1/2Mn1/2]O2 solid solution , 2005 .

[42]  M. Shikano,et al.  Structure, and magnetic and electrochemical properties of layered oxides, Li2IrO3 , 2003 .

[43]  I. Felner,et al.  The magnetic behavior of Li2MO3 (M=Mn, Ru and Ir) and Li2(Mn1−xRux)O3 , 2001, cond-mat/0111211.

[44]  J. Dahn,et al.  Effects of Stacking Fault Defects on the X-ray Diffraction Patterns of T2, O2, and O6 Structure Li2/3[CoxNi1/3-xMn2/3]O2 , 2001 .

[45]  Brian H. Toby,et al.  EXPGUI, a graphical user interface for GSAS , 2001 .

[46]  Z. Heiba,et al.  Structural and Anisotropic Thermal Expansion Correlation of Li2ZrO3 at Different Temperatures , 2000 .

[47]  J. Yamaki,et al.  Cathode characteristics of layered rocksalt oxide, Li2PtO3 , 1999 .

[48]  S. Hibble,et al.  Structure of two disordered molybdates, Li2MoIVO3 and Li4Mo3IVO8, from total neutron scattering , 1997 .

[49]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[50]  Arthur P. Ramirez,et al.  Strongly Geometrically Frustrated Magnets , 1994 .

[51]  M. Deem,et al.  A general recursion method for calculating diffracted intensities from crystals containing planar faults , 1991, Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences.

[52]  J. Goodenough,et al.  Structure and bonding in Li2MoO3 and Li2−xMoO3 (0 ≤ x ≤ 1.7) , 1988 .

[53]  Thole,et al.  Local probe for spin-orbit interaction. , 1988, Physical review letters.

[54]  J. Hodeau,et al.  Neutron profile refinement of the structures of Li2SnO3 and Li2ZrO3 , 1982 .

[55]  M. Jansen,et al.  Zur Kenntnis der NaCl-Strukturfamilie: Neue Untersuchungen an Li2MnO3 , 1973 .