Local Moment Instability of Os in Honeycomb Li2.15Os0.85O3
暂无分享,去创建一个
W. Pickett | S. Pi | A. P. Ramirez | M. Subramanian | D. Dessau | D. Haskel | Jun Li | M. Wallace | P. G. LaBarre
[1] H. Takagi,et al. Solution of the heavily stacking faulted crystal structure of the honeycomb iridate H3LiIr2O6. , 2017, Dalton transactions.
[2] A. Banerjee,et al. Neutron scattering in the proximate quantum spin liquid α-RuCl3 , 2017, Science.
[3] R. Valentí,et al. Electronic excitations in γ-Li2IrO3 , 2016, 1609.03316.
[4] Li Ying,et al. Electronic excitations in .GAMMA.-Li2IrO3 , 2017 .
[5] A. Manivannan,et al. Electrochemical Investigations on the Effect of Mg-Substitution in Li2MnO3Cathode , 2017 .
[6] A. P. Ramirez,et al. Charge transfer instability in a mixed Ir/Rh honeycomb lattice in Li 2 Ir 1- x Rh x O 3 solid solution , 2016 .
[7] Fang Liu,et al. Recent developments in the ABINIT software package , 2016, Comput. Phys. Commun..
[8] David D. O'Regan,et al. Optimization of constrained density functional theory , 2016, 1603.03428.
[9] W. Pickett,et al. Interplay between spin-orbit coupling and strong correlation effects: Comparison of the three osmate double perovskites Ba 2 A OsO 6 ( A = Na , Ca, Y) , 2015, 1510.01719.
[10] B. Kim,et al. Insulating nature of Na 2 IrO 3 : Mott-type or Slater-type , 2015, 1507.00658.
[11] J. van den Brink,et al. Strongly frustrated triangular spin lattice emerging from triplet dimer formation in honeycomb Li2IrO3 , 2014, Nature Communications.
[12] J. Tarascon,et al. Visualization of O-O peroxo-like dimers in high-capacity layered oxides for Li-ion batteries , 2015, Science.
[13] J. van den Brink,et al. Strong magnetic frustration and anti-site disorder causing spin-glass behavior in honeycomb Li2RhO3 , 2015, Scientific Reports.
[14] Ji Feng,et al. First-Principles Study of the Magnetic Structure of Na2IrO3. , 2015, Physical review letters.
[15] M. Veenendaal,et al. Fragility of ferromagnetic double exchange interactions and pressure tuning of magnetism in 3 d -5 d double perovskite Sr 2 FeOsO 6 , 2015, 1501.07889.
[16] H. Takagi,et al. Hyperhoneycomb Iridate β-Li2IrO3 as a platform for Kitaev magnetism. , 2014, Physical review letters.
[17] F. Ye,et al. Lattice-Tuned Magnetism of Ru$^{4+}$(4d$^{4})$ Ions in Single-Crystals of the Layered Honeycomb Ruthenates: Li$_{2}$RuO$_{3}$ and Na$_{2}$RuO$_{3}$ , 2014, 1408.5441.
[18] R. Arita,et al. First-principles study of the honeycomb-lattice iridates Na2IrO3 in the presence of strong spin-orbit interaction and electron correlations. , 2014, Physical review letters.
[19] A. Wattiaux,et al. Synthesis and characterization of O3-Na3LiFeSbO6: A new honeycomb ordered layered oxide , 2014 .
[20] R. Valentí,et al. Effect of isoelectronic doping on the honeycomb-lattice iridate A 2 IrO 3 , 2013, 1312.0815.
[21] H. Hosono,et al. Structural, magnetic, and electrical properties of Li2Ir1-xRuxO3 , 2013, 1311.7317.
[22] J. Pekola,et al. Tunneling and relaxation of single quasiparticles in a normal-superconductor-normal single-electron transistor , 2013, 1310.6508.
[23] F. Ye,et al. Li2RuO3 and Na2RuO3 , 2014 .
[24] G. Khaliullin. Excitonic magnetism in Van Vleck-type d4 Mott insulators. , 2013, Physical review letters.
[25] R. Valentí,et al. Origin of the insulating state in honeycomb iridates and rhodates , 2013, 1304.2258.
[26] Seongsu Lee,et al. Antiferromagnetic ordering in Li2MnO3 single crystals with a two-dimensional honeycomb lattice , 2012, Journal of physics. Condensed matter : an Institute of Physics journal.
[27] Seongsu Lee,et al. Antiferromagnetic Ordering in Li 2 MnO 3 Single Crystal with two Dimensional Honeycomb Lattice , 2012 .
[28] R. Valentí,et al. Na2IrO3 as a molecular orbital crystal. , 2012, Physical review letters.
[29] L. V. Viktorov,et al. Photo- and radioluminescence of lithium hafnate Li2HfO3 , 2012 .
[30] Yogesh Singh,et al. Relevance of the Heisenberg-Kitaev model for the honeycomb lattice iridates A2IrO3. , 2011, Physical review letters.
[31] N. M. Souza-Neto,et al. Orbital magnetism and spin-orbit effects in the electronic structure of BaIrO3. , 2010, Physical review letters.
[32] Y. Singh,et al. Antiferromagnetic Mott insulating state in single crystals of the hexagonal lattice material Na2IrO3 , 2010, 1006.0437.
[33] L. Dubrovinsky,et al. Pressure-induced isostructural phase transformation in γ -B 28 , 2010 .
[34] Stefan Goedecker,et al. ABINIT: First-principles approach to material and nanosystem properties , 2009, Comput. Phys. Commun..
[35] C. Delmas,et al. Reinvestigation of Li2MnO3 Structure: Electron Diffraction and High Resolution TEM , 2009 .
[36] H. Verweij,et al. Structure and properties of ordered Li2IrO3 and Li2PtO3 , 2008 .
[37] F. Jollet,et al. γandβcerium:LDA+Ucalculations of ground-state parameters , 2008 .
[38] Xavier Gonze,et al. Implementation of the projector augmented-wave method in the ABINIT code: Application to the study of iron under pressure , 2008 .
[39] G. Aromí,et al. Synthesis of 3d metallic single-molecule magnets , 2006 .
[40] Alexei Kitaev,et al. Anyons in an exactly solved model and beyond , 2005, cond-mat/0506438.
[41] Y. Meng,et al. High-resolution X-ray diffraction, DIFFaX, NMR and first principles study of disorder in the Li2MnO3-Li[Ni1/2Mn1/2]O2 solid solution , 2005 .
[42] M. Shikano,et al. Structure, and magnetic and electrochemical properties of layered oxides, Li2IrO3 , 2003 .
[43] I. Felner,et al. The magnetic behavior of Li2MO3 (M=Mn, Ru and Ir) and Li2(Mn1−xRux)O3 , 2001, cond-mat/0111211.
[44] J. Dahn,et al. Effects of Stacking Fault Defects on the X-ray Diffraction Patterns of T2, O2, and O6 Structure Li2/3[CoxNi1/3-xMn2/3]O2 , 2001 .
[45] Brian H. Toby,et al. EXPGUI, a graphical user interface for GSAS , 2001 .
[46] Z. Heiba,et al. Structural and Anisotropic Thermal Expansion Correlation of Li2ZrO3 at Different Temperatures , 2000 .
[47] J. Yamaki,et al. Cathode characteristics of layered rocksalt oxide, Li2PtO3 , 1999 .
[48] S. Hibble,et al. Structure of two disordered molybdates, Li2MoIVO3 and Li4Mo3IVO8, from total neutron scattering , 1997 .
[49] Burke,et al. Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.
[50] Arthur P. Ramirez,et al. Strongly Geometrically Frustrated Magnets , 1994 .
[51] M. Deem,et al. A general recursion method for calculating diffracted intensities from crystals containing planar faults , 1991, Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences.
[52] J. Goodenough,et al. Structure and bonding in Li2MoO3 and Li2−xMoO3 (0 ≤ x ≤ 1.7) , 1988 .
[53] Thole,et al. Local probe for spin-orbit interaction. , 1988, Physical review letters.
[54] J. Hodeau,et al. Neutron profile refinement of the structures of Li2SnO3 and Li2ZrO3 , 1982 .
[55] M. Jansen,et al. Zur Kenntnis der NaCl-Strukturfamilie: Neue Untersuchungen an Li2MnO3 , 1973 .