Back-contacted BaSi2 solar cells: an optical study.

We present the optical investigation of a novel back-contacted architecture for solar cells based on a thin barium (di)silicide (BaSi2) absorber. First, through the analysis of absorption limits of different semiconducting materials, we show the potential of BaSi2 for photovoltaic applications. Then, the proposed back contacted BaSi2 solar cell design is investigated and optimized. An implied photocurrent density of 40.3 mA/cm2 in a 1-μm thick absorber was achieved, paving the way for novel BaSi2-based thin-film solar cells.

[1]  T. Suemasu,et al.  Simple Vacuum Evaporation Route to BaSi2 Thin Films for Solar Cell Applications , 2016 .

[2]  Yi Cui,et al.  Absorption enhancement in ultrathin crystalline silicon solar cells with antireflection and light-trapping nanocone gratings. , 2012, Nano letters.

[3]  Wmm Erwin Kessels,et al.  Ultralow surface recombination of c-Si substrates passivated by plasma-assisted atomic layer deposited Al2O3 , 2006 .

[4]  T. Suemasu,et al.  Determination of Bulk Minority-Carrier Lifetime in BaSi2 Earth-Abundant Absorber Films by Utilizing a Drastic Enhancement of Carrier Lifetime by Post-Growth Annealing , 2013 .

[5]  Zhengshan Yu,et al.  Selecting tandem partners for silicon solar cells , 2016, Nature Energy.

[6]  Miro Zeman,et al.  Organometallic halide perovskite/barium di-silicide thin-film double-junction solar cells , 2016, SPIE Photonics Europe.

[7]  M. Zeman,et al.  Experimental Demonstration of 4n2 Classical Absorption Limit in Nanotextured Ultrathin Solar Cells with Dielectric Omnidirectional Back Reflector , 2014 .

[8]  H. Queisser,et al.  Detailed Balance Limit of Efficiency of p‐n Junction Solar Cells , 1961 .

[9]  Martin A. Green,et al.  Solar cell efficiency tables (version 48) , 2016 .

[10]  Miro Zeman,et al.  Advanced light management based on periodic textures for Cu(In,Ga)Se2 thin-film solar cells. , 2016, Optics express.

[11]  M. Zeman,et al.  The role of oxide interlayers in back reflector configurations for amorphous silicon solar cells , 2013 .

[12]  E. Yablonovitch,et al.  Limiting efficiency of silicon solar cells , 1984, IEEE Transactions on Electron Devices.

[13]  M. Zeman,et al.  Modelling of thin-film silicon solar cells , 2013 .

[14]  P. Babál,et al.  Wide bandgap p-type nanocrystalline silicon oxide as window layer for high performance thin-film silicon multi-junction solar cells , 2015 .

[15]  T. Suemasu,et al.  Optical Absorption Properties of BaSi2 Epitaxial Films Grown on a Transparent Silicon-on-Insulator Substrate Using Molecular Beam Epitaxy , 2011 .

[16]  M. Zeman,et al.  Front/Rear Decoupled Texturing in Refractive and Diffractive Regimes for Ultra-Thin Silicon-Based Solar Cells , 2013 .

[17]  Diego Caratelli,et al.  3‐D optical modeling of thin‐film silicon solar cells on diffraction gratings , 2013 .

[18]  T. Suemasu,et al.  Optical and electrical properties of semiconducting BaSi2 thin films on Si substrates grown by molecular beam epitaxy , 2006 .

[19]  T. Suemasu,et al.  Fabrication and characterization of polycrystalline BaSi2 by RF sputtering , 2013 .

[20]  N. Umezawa,et al.  BaSi2 as a promising low-cost, earth-abundant material with large optical activity for thin-film solar cells: A hybrid density functional study , 2014 .

[21]  V. Borisenko,et al.  Isostructural BaSi2, BaGe2 and SrGe2: electronic and optical properties , 2007 .

[22]  Martin A. Green,et al.  Lambertian light trapping in textured solar cells and light‐emitting diodes: analytical solutions , 2002 .

[23]  T. Suemasu,et al.  Effect of amorphous Si capping layer on the hole transport properties of BaSi2 and improved conversion efficiency approaching 10% in p-BaSi2/n-Si solar cells , 2016 .

[24]  Zongfu Yu,et al.  Fundamental limit of light trapping in grating structures. , 2010, Optics express.

[25]  T. Sekiguchi,et al.  Investigation of grain boundaries in BaSi2 epitaxial films on Si(1 1 1) substrates using transmission electron microscopy and electron-beam-induced current technique , 2012 .

[26]  T. Suemasu,et al.  Hard x-ray photoelectron spectroscopy study on valence band structure of semiconducting BaSi2 , 2013 .

[27]  Miro Zeman,et al.  Full‐wave optoelectrical modeling of optimized flattened light‐scattering substrate for high efficiency thin‐film silicon solar cells , 2014 .

[28]  N. Hamada,et al.  Electronic and optical properties of bulk crystals of semiconducting orthorhombic BaSi2 prepared by the vertical Bridgman method , 2007 .