A MATLAB-based Kriged Kalman Filter software for interpolating missing data in GNSS coordinate time series

GNSS coordinate time series data for permanent reference stations often suffer from random, or even continuous, missing data. Missing data interpolation is necessary due to the fact that some data processing methods require evenly spaced data. Traditional missing data interpolation methods usually use single point time series, without considering spatial correlations between points. We present a MATLAB software for dynamic spatiotemporal interpolation of GNSS missing data based on the Kriged Kalman Filter model. With the graphical user interface, users can load source GNSS data, set parameters, view the interpolated series and save the final results. The SCIGN GPS data indicate that the software is an effective tool for GNSS coordinate time series missing data interpolation.

[1]  Noel A Cressie,et al.  Statistics for Spatial Data. , 1992 .

[2]  Dora Pancheva,et al.  Fast and ultrafast Kelvin wave modulations of the equatorial evening F region vertical drift and spread F development , 2014, Earth, Planets and Space.

[3]  Carine Bruyninx,et al.  Application of the Wavelet Transform for GPS Cycle Slip Detection and Comparison with Kalman Filter , 1993 .

[4]  Jorge Cortés,et al.  Distributed Kriged Kalman Filter for Spatial Estimation , 2009, IEEE Transactions on Automatic Control.

[5]  Robert H. Shumway,et al.  Time series analysis and its applications : with R examples , 2017 .

[6]  Michael Ghil,et al.  Spatio-temporal filling of missing points in geophysical data sets , 2006 .

[7]  Qi Wang,et al.  Noise analysis of continuous GPS coordinate time series for CMONOC , 2012 .

[8]  Jm Colebrook,et al.  Continuous plankton records - zooplankton and environment, northeast atlantic and north-sea, 1948-1975 , 1978 .

[9]  Mike Rees,et al.  5. Statistics for Spatial Data , 1993 .

[10]  Yehuda Bock,et al.  Spatiotemporal filtering using principal component analysis and Karhunen-Loeve expansion approaches for regional GPS network analysis , 2006 .

[11]  Wujiao Dai,et al.  GNSS Vertical Coordinate Time Series Analysis Using Single-Channel Independent Component Analysis Method , 2017, Pure and Applied Geophysics.

[12]  Wujiao Dai,et al.  Dam Deformation Monitoring Data Analysis Using Space-Time Kalman Filter , 2016, ISPRS Int. J. Geo Inf..

[13]  Wujiao Dai,et al.  Extracting seasonal deformations of the Nepal Himalaya region from vertical GPS position time series using Independent Component Analysis , 2017 .

[14]  T. Dixon,et al.  Noise in GPS coordinate time series , 1999 .

[15]  N. Cressie Fitting variogram models by weighted least squares , 1985 .

[16]  Ali Alhajraf,et al.  Prediction of non-methane hydrocarbons in Kuwait using regression and Bayesian kriged Kalman model , 2012, Environmental and Ecological Statistics.

[17]  R. Shumway,et al.  AN APPROACH TO TIME SERIES SMOOTHING AND FORECASTING USING THE EM ALGORITHM , 1982 .

[18]  Wang Xing-yu Short-Term Wind Speed Forecasting For Multiple Wind Farms Using Bayesian Krigedkalman Mode , 2012 .

[19]  F. J. Alonso,et al.  The Kriged Kalman filter , 1998 .

[20]  Kefei Zhang,et al.  An effective toolkit for the interpolation and gross error detection of GPS time series , 2016 .

[21]  F. Grassa,et al.  Total (fumarolic + diffuse soil) CO2 output from Furnas volcano , 2015, Earth, Planets and Space.

[22]  Fred L. Bookstein,et al.  Principal Warps: Thin-Plate Splines and the Decomposition of Deformations , 1989, IEEE Trans. Pattern Anal. Mach. Intell..

[23]  Yunfeng Tian,et al.  iGPS: IDL tool package for GPS position time series analysis , 2011, GPS Solutions.

[24]  Wujiao Dai,et al.  Spatiotemporal analysis of GPS time series in vertical direction using independent component analysis , 2015, Earth, Planets and Space.

[25]  K. Mardia,et al.  A Bayesian kriged Kalman model for short‐term forecasting of air pollution levels , 2005 .

[26]  Tsehaie Woldai,et al.  GPS interactive time series analysis software , 2012, GPS Solutions.

[27]  Sujit K. Sahu,et al.  Modeling rainfall data using a Bayesian Kriged-Kalman model , 2007 .

[28]  Chang Xu,et al.  Reconstruction of gappy GPS coordinate time series using empirical orthogonal functions , 2016 .

[29]  A. McBratney,et al.  Choosing functions for semi‐variograms of soil properties and fitting them to sampling estimates , 1986 .