Effect of the Membrane Thermal Conductivity on the Performance of a Polymer Electrolyte Membrane Fuel Cell

[1]  S. Kjelstrup,et al.  Through-Plane Thermal Conductivity of PEMFC Porous Transport Layers , 2010 .

[2]  Chao-Yang Wang,et al.  Fundamental models for fuel cell engineering. , 2004, Chemical reviews.

[3]  Xianguo Li,et al.  Measurement of through-plane effective thermal conductivity and contact resistance in PEM fuel cell diffusion media , 2010 .

[4]  Ronghuan He,et al.  PBI‐Based Polymer Membranes for High Temperature Fuel Cells – Preparation, Characterization and Fuel Cell Demonstration , 2004 .

[5]  Hyunchul Ju,et al.  A single-phase, non-isothermal model for PEM fuel cells , 2005 .

[6]  Jun Shen,et al.  A review of PEM fuel cell durability: Degradation mechanisms and mitigation strategies , 2008 .

[7]  T. Springer,et al.  Polymer Electrolyte Fuel Cell Model , 1991 .

[8]  Signe Kjelstrup,et al.  Thermal conductivities from temperature profiles in the polymer electrolyte fuel cell , 2004 .

[9]  Alfredo Iranzo,et al.  Numerical model for the performance prediction of a PEM fuel cell. Model results and experimental va , 2010 .

[10]  Olli Himanen,et al.  Modelling the Effect of Inhomogeneous Compression of GDL on Local Transport Phenomena in a PEM Fuel Cell , 2008 .

[11]  Qingfeng Li,et al.  Approaches and Recent Development of Polymer Electrolyte Membranes for Fuel Cells Operating above 100 °C , 2003 .

[12]  Chao-Yang Wang,et al.  A Nonisothermal, Two-Phase Model for Polymer Electrolyte Fuel Cells , 2006 .

[13]  M. Mench,et al.  Direct measurement of through-plane thermal conductivity and contact resistance in fuel cell materials , 2006 .

[14]  S. Kandlikar,et al.  Effective Thermal Conductivity of Gas Diffusion Layers Used in PEMFC: Measured with Guarded-Hot-Plate Method and Predicted by a Fractal Model , 2010 .

[15]  C. Siegel Review of computational heat and mass transfer modeling in polymer-electrolyte-membrane (PEM) fuel cells , 2008 .

[16]  Srinivas Tadigadapa,et al.  Thin film temperature sensor for real-time measurement of electrolyte temperature in a polymer electrolyte fuel cell , 2006 .

[17]  F. Rosa,et al.  Update on numerical model for the performance prediction of a PEM Fuel Cell , 2011 .

[18]  Chao-Yang Wang,et al.  Liquid Water Transport in Gas Diffusion Layer of Polymer Electrolyte Fuel Cells , 2004 .

[19]  Hyunchul Ju,et al.  Nonisothermal Modeling of Polymer Electrolyte Fuel Cells I. Experimental Validation , 2005 .

[20]  Andreas Wiegmann,et al.  Estimating effective thermal conductivity in carbon paper diffusion media , 2010 .

[21]  Chi-Yuan Lee,et al.  Use of flexible micro-temperature sensor to determine temperature in situ and to simulate a proton exchange membrane fuel cell , 2011 .

[22]  S. Kjelstrup,et al.  Ex situ measurements of through-plane thermal conductivities in a polymer electrolyte fuel cell , 2010 .

[23]  D. Wilkinson,et al.  Degradation of polymer electrolyte membranes , 2006 .

[24]  F. Rosa,et al.  Experimental fuel cell performance analysis under different operating conditions and bipolar plate designs , 2010 .

[25]  Chao-Yang Wang,et al.  Transport Phenomena in Elevated Temperature PEM Fuel Cells , 2007 .

[26]  N. Djilali,et al.  A novel approach to determine the in-plane thermal conductivity of gas diffusion layers in proton ex , 2011 .

[27]  Xianguo Li,et al.  Measurement of in-plane thermal conductivity of carbon paper diffusion media in the temperature range of −20°C to +120°C , 2011 .

[28]  A. Vahidi,et al.  A review of the main parameters influencing long-term performance and durability of PEM fuel cells , 2008 .

[29]  Jesse S. Wainright,et al.  Conductivity of PBI Membranes for High-Temperature Polymer Electrolyte Fuel Cells , 2004 .