Meta-analysis of 49 549 individuals imputed with the 1000 Genomes Project reveals an exonic damaging variant in ANGPTL4 determining fasting TG levels

Background So far, more than 170 loci have been associated with circulating lipid levels through genome-wide association studies (GWAS). These associations are largely driven by common variants, their function is often not known, and many are likely to be markers for the causal variants. In this study we aimed to identify more new rare and low-frequency functional variants associated with circulating lipid levels. Methods We used the 1000 Genomes Project as a reference panel for the imputations of GWAS data from ∼60 000 individuals in the discovery stage and ∼90 000 samples in the replication stage. Results Our study resulted in the identification of five new associations with circulating lipid levels at four loci. All four loci are within genes that can be linked biologically to lipid metabolism. One of the variants, rs116843064, is a damaging missense variant within the ANGPTL4 gene. Conclusions This study illustrates that GWAS with high-scale imputation may still help us unravel the biological mechanism behind circulating lipid levels.

Marcelo P. Segura-Lepe | P. Elliott | O. Franco | A. Hofman | A. Uitterlinden | T. Lehtimäki | E. Boerwinkle | V. Salomaa | V. Gudnason | J. Viikari | A. Sabo | I. Borecki | Albert Vernon Smith | O. Raitakari | A. Dehghan | F. Rivadeneira | B. Psaty | B. Penninx | G. Willemsen | E. D. de Geus | T. Harris | D. Arking | S. Ripatti | H. Snieder | R. Cooper | P. Harst | J. Rotter | T. Harris | I. Rudan | D. Boomsma | E. D. de Geus | M. Swertz | J. Brody | K. Rice | I. Surakka | A. Isaacs | A. D. de Craen | J. Deelen | E. V. van Leeuwen | P. Slagboom | C. V. van Duijn | L. Cupples | J. Jukema | James G. Wilson | J. Bis | J. Kooner | S. Rich | L. Hocking | C. Hayward | P. Joshi | I. Kolčić | O. Polašek | V. Vitart | H. Campbell | M. Kähönen | James F. Wilson | M. Feitosa | J. Marten | A. Campbell | I. Nolte | S. Padmanabhan | B. Tayo | P. J. van der Most | Weihua Zhang | R. de Mutsert | Q. Duan | E. Evangelou | T. Forrester | B. Lehne | C. Mckenzie | Y. Milaneschi | W. Scott | J. Chambers | A. Oldehinkel | P. van der Harst | D. Mook-Kanamori | A. Morrison | E. Sijbrands | L. Lyytikäinen | J. Jukema | C. Duijn | P. Navarro | Charles White | S. Trompet | S. W. van der Laan | N. Verweij | I. Ford | R. Gansevoort | G. Pasterkamp | L. Lange | R. Li-Gao | K. Nikus | E. D. Geus | S. W. Laan | A. Craen | Sian-Tsung Tan | H. Mbarek | A. Manichaikul | J. Mychaleckyj | T. Zemunik | E. M. Leeuwen | J. Huffman | S. Demissie | K. V. Dijk | R. Mutsert | P. J. Most | K. Willems van Dijk | J. V. van Klinken | Jennifer A. Brody | Peter J. van der Most | A. Kooner | Hester M de Ruijter | S. Rich | Terrence G. Forrester | A. Smith | O. Raitakari | James F. Wilson | A. Hofman | P. van der harst | S. Tan | Hester M de Ruijter | Terrence Forrester | A. Smith | Angad S Kooner | Weihua Zhang | M. Kähönen | A. Uitterlinden | C. McKenzie | P. Slagboom | D. Boomsma | B. Psaty | Charles White | J. B. V. Klinken | Hester M de Ruijter | Olli T. Raitakari | A. Campbell | A. de Craen | Cornelia M. Van Duijn | Hester M de Ruijter | R. Cooper

[1]  Sara M. Willems,et al.  The impact of low-frequency and rare variants on lipid levels , 2015, Nature Genetics.

[2]  Pieter B. T. Neerincx,et al.  Genome of the Netherlands population-specific imputations identify an ABCA6 variant associated with cholesterol levels , 2015, Nature communications.

[3]  David M. Herrington,et al.  Multiple rare alleles at LDLR and APOA5 confer risk for early-onset myocardial infarction , 2014, Nature.

[4]  E. Zeggini,et al.  The African Genome Variation Project shapes medical genetics in Africa , 2014, Nature.

[5]  J. Buitelaar,et al.  Cohort Profile Update: The TRacking Adolescents’ Individual Lives Survey (TRAILS) , 2014, International journal of epidemiology.

[6]  John Spertus,et al.  Inactivating mutations in NPC1L1 and protection from coronary heart disease. , 2014, The New England journal of medicine.

[7]  He Zhang,et al.  Loss-of-function mutations in APOC3, triglycerides, and coronary disease. , 2014, The New England journal of medicine.

[8]  Alex P. Reiner,et al.  Loss-of-Function Mutations in APOC 3 , Triglycerides , and Coronary Disease , 2014 .

[9]  Abstr Act,et al.  Inactivating Mutations in NPC1L1 and Protection from Coronary Heart Disease , 2014 .

[10]  Inactivating Mutations in NPC 1 L 1 and Protection from Coronary Heart Disease , 2014 .

[11]  Tanya M. Teslovich,et al.  Discovery and refinement of loci associated with lipid levels , 2013, Nature Genetics.

[12]  Margreet Kloppenburg,et al.  The Netherlands Epidemiology of Obesity (NEO) study: study design and data collection , 2013, European Journal of Epidemiology.

[13]  Meike W. Vernooij,et al.  The Rotterdam Study: 2014 objectives and design update , 2013, European Journal of Epidemiology.

[14]  M. McCarthy,et al.  Exome sequencing-driven discovery of coding polymorphisms associated with common metabolic phenotypes , 2012, Diabetologia.

[15]  J. Marchini,et al.  Fast and accurate genotype imputation in genome-wide association studies through pre-phasing , 2012, Nature Genetics.

[16]  N. Sattar,et al.  Replication of LDL GWAs hits in PROSPER/PHASE as validation for future (pharmaco)genetic analyses , 2011, BMC Medical Genetics.

[17]  Michele Magrane,et al.  UniProt Knowledgebase: a hub of integrated protein data , 2011, Database J. Biol. Databases Curation.

[18]  P. Visscher,et al.  GCTA: a tool for genome-wide complex trait analysis. , 2011, American journal of human genetics.

[19]  Ralf Herwig,et al.  ConsensusPathDB: toward a more complete picture of cell biology , 2010, Nucleic Acids Res..

[20]  Jana Marie Schwarz,et al.  MutationTaster evaluates disease-causing potential of sequence alterations , 2010, Nature Methods.

[21]  Tanya M. Teslovich,et al.  Biological, Clinical, and Population Relevance of 95 Loci for Blood Lipids , 2010, Nature.

[22]  Yun Li,et al.  METAL: fast and efficient meta-analysis of genomewide association scans , 2010, Bioinform..

[23]  F. Zitman,et al.  Associations between serum lipids and major depressive disorder: results from the Netherlands Study of Depression and Anxiety (NESDA). , 2010, The Journal of clinical psychiatry.

[24]  T. Lehner,et al.  The Netherlands Twin Register Biobank: A Resource for Genetic Epidemiological Studies , 2010, Twin Research and Human Genetics.

[25]  P. Bork,et al.  A method and server for predicting damaging missense mutations , 2010, Nature Methods.

[26]  M. Beekman,et al.  Nonagenarian Siblings and Their Offspring Display Lower Risk of Mortality and Morbidity than Sporadic Nonagenarians: The Leiden Longevity Study , 2009, Journal of the American Geriatrics Society.

[27]  Justin C. Fay,et al.  Identification of deleterious mutations within three human genomes. , 2009, Genome research.

[28]  F. Collins,et al.  Potential etiologic and functional implications of genome-wide association loci for human diseases and traits , 2009, Proceedings of the National Academy of Sciences.

[29]  P. Donnelly,et al.  A Flexible and Accurate Genotype Imputation Method for the Next Generation of Genome-Wide Association Studies , 2009, PLoS genetics.

[30]  Igor Rudan,et al.  Runs of homozygosity in European populations. , 2008, American journal of human genetics.

[31]  P. Cuijpers,et al.  The Netherlands Study of Depression and Anxiety (NESDA): rationale, objectives and methods , 2008, International journal of methods in psychiatric research.

[32]  Ronald P. Stolk,et al.  Universal risk factors for multifactorial diseases-LifeLines : a three-generation population-based study , 2008 .

[33]  Qiong Yang,et al.  The Third Generation Cohort of the National Heart, Lung, and Blood Institute's Framingham Heart Study: design, recruitment, and initial examination. , 2007, American journal of epidemiology.

[34]  Eric Boerwinkle,et al.  Population-based resequencing of ANGPTL4 uncovers variations that reduce triglycerides and increase HDL , 2007, Nature Genetics.

[35]  Danielle Posthuma,et al.  Netherlands Twin Register: From Twins to Twin Families , 2006, Twin Research and Human Genetics.

[36]  H. Towle,et al.  ChREBP•Mlx Is the Principal Mediator of Glucose-induced Gene Expression in the Liver* , 2006, Journal of Biological Chemistry.

[37]  J. Repa,et al.  Carbohydrate response element binding protein, ChREBP, a transcription factor coupling hepatic glucose utilization and lipid synthesis. , 2006, Cell metabolism.

[38]  Milton H. Saier,et al.  TCDB: the Transporter Classification Database for membrane transport protein analyses and information , 2005, Nucleic Acids Res..

[39]  Marian Beekman,et al.  Evidence of genetic enrichment for exceptional survival using a family approach: the Leiden Longevity Study , 2006, European Journal of Human Genetics.

[40]  H. Towle Glucose as a regulator of eukaryotic gene transcription , 2005, Trends in Endocrinology & Metabolism.

[41]  J. Girard,et al.  Carbohydrate responsive element binding protein (ChREBP) and sterol regulatory element binding protein-1c (SREBP-1c): two key regulators of glucose metabolism and lipid synthesis in liver. , 2005, Biochimie.

[42]  René Veenstra,et al.  Evaluation of non-response bias in mental health determinants and outcomes in a large sample of pre-adolescents , 2005, European Journal of Epidemiology.

[43]  M. Magnuson,et al.  Hepatic Glucokinase Is Required for the Synergistic Action of ChREBP and SREBP-1c on Glycolytic and Lipogenic Gene Expression* , 2004, Journal of Biological Chemistry.

[44]  G. Pasterkamp,et al.  Athero-express: Differential atherosclerotic plaque expression of mRNA and protein in relation to cardiovascular events and patient characteristics. Rationale and design , 2004, European Journal of Epidemiology.

[45]  A. M. George,et al.  The ABC transporter structure and mechanism: perspectives on recent research , 2004, Cellular and Molecular Life Sciences CMLS.

[46]  Ron D. Appel,et al.  ExPASy: the proteomics server for in-depth protein knowledge and analysis , 2003, Nucleic Acids Res..

[47]  P. Macfarlane,et al.  Pravastatin in elderly individuals at risk of vascular disease (PROSPER): a randomised controlled trial , 2002, The Lancet.

[48]  R. Kronmal,et al.  Multi-Ethnic Study of Atherosclerosis: objectives and design. , 2002, American journal of epidemiology.

[49]  D. Grobbee,et al.  Microalbuminuria is common, also in a nondiabetic, nonhypertensive population, and an independent indicator of cardiovascular risk factors and cardiovascular morbidity , 2001, Journal of internal medicine.

[50]  Elizabeth M. Smigielski,et al.  dbSNP: the NCBI database of genetic variation , 2001, Nucleic Acids Res..

[51]  M. Ashburner,et al.  Gene Ontology: tool for the unification of biology , 2000, Nature Genetics.

[52]  P. Macfarlane,et al.  The design of a prospective study of Pravastatin in the Elderly at Risk (PROSPER). PROSPER Study Group. PROspective Study of Pravastatin in the Elderly at Risk. , 1999, The American journal of cardiology.

[53]  Hiroyuki Ogata,et al.  KEGG: Kyoto Encyclopedia of Genes and Genomes , 1999, Nucleic Acids Res..

[54]  J. Naylor,et al.  Mendelian inheritance in man: A catalog of human genes and genetic disorders , 1996 .

[55]  R. Kronmal,et al.  The Cardiovascular Health Study: design and rationale. , 1991, Annals of epidemiology.

[56]  W. Kannel,et al.  AN APPROACH TO LONGITUDINAL STUDIES IN A COMMUNITY: THE FRAMINGHAM STUDY , 1963, Annals of the New York Academy of Sciences.