Molecular Detection and Quantification of Pythium Species: Evolving Taxonomy, New Tools, and Challenges.

The genus Pythium is one of the most important groups of soilborne plant pathogens, present in almost every agricultural soil and attacking the roots of thousands of hosts, reducing crop yield and quality. Most species are generalists, necrotrophic pathogens that infect young juvenile tissue. In fact, Cook and Veseth have called Pythium the "common cold" of wheat, because of its chronic nature and ubiquitous distribution. Where Pythium spp. are the cause of seedling damping-off or emergence reduction, the causal agent can easily be identified based on symptoms and culturing. In more mature plants, however, infection by Pythium spp. is more difficult to diagnose, because of the nonspecific symptoms that could have abiotic causes such as nutrient deficiencies or be due to other root rotting pathogens. Molecular methods that can accurately identify and quantify this important group are needed for disease diagnosis and management recommendations and to better understand the epidemiology and ecology of this important group. The purpose of this article is to outline the current state-of-the-art in the detection and quantification of this important genus. In addition, we will introduce the reader to new changes in the taxonomy of this group.

[1]  I. Merwin,et al.  Long-term orchard groundcover management systems affect soil microbial communities and apple replant disease severity , 2008, Plant and Soil.

[2]  A. Schurko,et al.  A molecular phylogeny of Pythium insidiosum. , 2003, Mycological research.

[3]  E. Lara,et al.  SSU rRNA reveals major trends in oomycete evolution , 2011, Fungal Diversity.

[4]  L. Gómez-Alpízar,et al.  A PCR‐RFLP assay for identification and detection of Pythium myriotylum, causal agent of the cocoyam root rot disease , 2011, Letters in applied microbiology.

[5]  Seonghee Lee,et al.  Genetic structure and distribution of Pythium aphanidermatum populations in Pennsylvania greenhouses based on analysis of AFLP and SSR markers , 2010, Mycologia.

[6]  K. Kageyama,et al.  Refined PCR protocol for detection of plant pathogens in soil , 2003, Journal of General Plant Pathology.

[7]  C. Lévesque,et al.  Oligonucleotide Array for Identification and Detection of Pythium Species , 2006, Applied and Environmental Microbiology.

[8]  J. Vivanco,et al.  Pyrosequencing Assessment of Soil Microbial Communities in Organic and Conventional Potato Farms. , 2010, Plant disease.

[9]  B. Thomma,et al.  Real-time PCR for detection and quantification of fungal and oomycete tomato pathogens in plant and soil samples , 2006 .

[10]  A. Murillo-Williams,et al.  Early Incidence of Soybean Seedling Pathogens in Iowa , 2008 .

[11]  C. Hong,et al.  Plant Pathogens in Irrigation Water: Challenges and Opportunities , 2005 .

[12]  H. Kläring,et al.  Evaluation of a method for quantification of Pythium aphanidermatum in cucumber roots at different temperatures and inoculum densities , 2006 .

[13]  J. Middleton The taxonomy, host range and geographic distribution of the genus Pythium. , 1943 .

[14]  M. Mazzola,et al.  Oogonial biometry and phylogenetic analyses of the Pythium vexans species group from woody agricultural hosts in South Africa reveal distinct groups within this taxon. , 2011, Fungal biology.

[15]  John McNeill,et al.  XVII International Botanical Congress: preliminary mail vote and report of Congress action on nomenclature proposals , 2005 .

[16]  C. Pankhurst,et al.  A DNA probe for identification of Pythium irregulare in soil , 1995 .

[17]  S. Warwick,et al.  Isozyme variation, morphology, and growth response to temperature in Pythium irregulare , 1997 .

[18]  H. Amano,et al.  Detection and quantitative analysis of zoospores of Pythium porphyrae, causative organism of red rot disease in Porphyra, by competitive PCR , 2001, Journal of Applied Phycology.

[19]  M. Wingfield One Fungus One Name: A Plant Pathologist’s View , 2011 .

[20]  R. Cook,et al.  Wheat health management. , 1991 .

[21]  A new peronosporomycete, Halioticida noduliformans gen. et sp. nov., isolated from white nodules in the abalone Haliotis spp. from Japan , 2009 .

[22]  W. Stevenson,et al.  A methodology to detect and quantify five pathogens causing potato tuber decay using real-time quantitative polymerase chain reaction. , 2006, Phytopathology.

[23]  A. D. Cock,et al.  5S ribosomal RNA gene spacers as species-specific probes for eight species of Pythium , 1996 .

[24]  Seonghee Lee,et al.  Identification and characterization of simple sequence repeat markers for Pythium aphanidermatum, P. cryptoirregulare, and P. irregulare and the potential use in Pythium population genetics , 2008, Current Genetics.

[25]  H. Kistler,et al.  Species-specific banding patterns of restriction endonuclease-digested mitochondrial DNA from the genusPythium , 1990 .

[26]  N. Klopfenstein,et al.  Characterization of a Pythium ultimum-specific antigen and factors that affect its detection using a monoclonal antibody , 1995 .

[27]  Y. Lin,et al.  Specific detection ofPythium aphanidermatum from hydroponic nutrient solution by booster PCR with DNA primers developed from mitochondrial DNA , 2002, Phytoparasitica.

[28]  R Core Team,et al.  R: A language and environment for statistical computing. , 2014 .

[29]  J. O. Becker,et al.  Investigations into peach seedling stunting caused by a replant soil. , 2009, FEMS microbiology ecology.

[30]  C. Lévesque,et al.  Influence of Pythium oligandrum Biocontrol on Fungal and Oomycete Population Dynamics in the Rhizosphere , 2009, Applied and Environmental Microbiology.

[31]  C. Gachon,et al.  DNA barcoding of oomycetes with cytochrome c oxidase subunit I and internal transcribed spacer , 2011, Molecular ecology resources.

[32]  E. Nelson,et al.  Diversity of Peronosporomycete (Oomycete) Communities Associated with the Rhizosphere of Different Plant Species , 2006, Microbial Ecology.

[33]  F. Martin,et al.  Phylogenetic relationships among Phytophthora species inferred from sequence analysis of mitochondrially encoded cytochrome oxidase I and II genes , 2003, Mycologia.

[34]  Y. Brygoo,et al.  Ribosomal RNA sequence divergence within the Pythiaceae , 1995 .

[35]  Nicolas Lartillot,et al.  PhyloBayes 3: a Bayesian software package for phylogenetic reconstruction and molecular dating , 2009, Bioinform..

[36]  M. Mazzola,et al.  Elucidation of the microbial complex having a causal role in the development of apple replant disease in washington. , 1998, Phytopathology.

[37]  A. Schurko,et al.  Diversity and evolution of 5S rRNA gene family organization in Pythium. , 2006, Mycological research.

[38]  S. Warwick,et al.  Isozyme variation in heterothallic species and related asexual isolates of Pythium , 1997 .

[39]  V. Robert,et al.  Cophenetic correlation analysis as a strategy to select phylogenetically informative proteins: an example from the fungal kingdom , 2007, BMC Evolutionary Biology.

[40]  H. Voglmayr,et al.  Phylogenetic relationships of Albugo species (white blister rusts) based on LSU rDNA sequence and oospore data. , 2006, Mycological research.

[41]  T. A. Hall,et al.  BIOEDIT: A USER-FRIENDLY BIOLOGICAL SEQUENCE ALIGNMENT EDITOR AND ANALYSIS PROGRAM FOR WINDOWS 95/98/ NT , 1999 .

[42]  J. L. Sundsbak,et al.  Differentiation and Detection of Sugar Beet Fungal Pathogens Using PCR Amplification of Actin Coding Sequences and the ITS Region of the rRNA Gene. , 2000, Plant disease.

[43]  F. Martin Phylogenetic relationships among some Pythium species inferred from sequence analysis of the mitochondrially encoded cytochrome oxidase II gene , 2000 .

[44]  J. Duncan,et al.  A molecular phylogeny of Phytophthora and related oomycetes. , 2000, Fungal genetics and biology : FG & B.

[45]  M. Hyakumachi,et al.  Detection of Pythium ultimum Using Polymerase Chain Reaction with Species-Specific Primers. , 1997, Plant disease.

[46]  M. Kakishima,et al.  Phylogeny of the genus Pythium and description of new genera , 2010, Mycoscience.

[47]  L. Adam,et al.  PCR-based determination of colonization patterns during potato tuber infection by single and multiple pathogens , 2007, European Journal of Plant Pathology.

[48]  P. Wang,et al.  Species‐specific PCR primers for Pythium developed from ribosomal ITS1 region , 2003, Letters in applied microbiology.

[49]  A. Al-Sadi,et al.  Genetic diversity, aggressiveness and metalaxyl sensitivity of Pythium aphanidermatum populations infecting cucumber in Oman , 2007 .

[50]  D. S. St. Clair,et al.  Outcrossing in the homothallic oomycete, Pythium ultimum, detected with molecular markers , 1993, Current Genetics.

[51]  F. Martin Selection of DNA probes useful for isolate identification of two Pythium spp. , 1991 .

[52]  P. Kirk,et al.  International Code of Nomenclature for algae, fungi, and plants (Melbourne Code) , 2012 .

[53]  T. Paulitz,et al.  Real-time polymerase chain reaction: applications to studies on soilborne pathogens , 2005 .

[54]  G. Klassen,et al.  Comparison of Physical Maps of Ribosomal DNA Repeating Units in Pythium, Phytophthora and Apodachlya , 1987 .

[55]  Neil Boonham,et al.  Development and Validation of Conventional and Quantitative Polymerase Chain Reaction Assays for the Detection of Storage Rot Potato Pathogens, Phytophthora erythroseptica, Pythium ultimum and Phoma foveata , 2007 .

[56]  T. Hedderson,et al.  18S rDNA for species of Leptolegnia and other Peronosporomycetes : Justification for the subclass taxa Saprolegniomycetidae and Peronosporomycetidae and division of the Saprolegniaceae sensu lato into the Leptolegniaceae and Saprolegniaceae , 1999 .

[57]  A M Bailey,et al.  Identification to the species level of the plant pathogens Phytophthora and Pythium by using unique sequences of the ITS1 region of ribosomal DNA as capture probes for PCR ELISA. , 2002, FEMS microbiology letters.

[58]  M. Ling Polymerase chain reaction. , 1993, Journal of the American Academy of Dermatology.

[59]  S. Mathiyazhagan,et al.  Morphological and molecular characterisation of Pythium species causing chilli (Capsicum annuum L.) damping-off , 2010 .

[60]  H. Amano,et al.  Detection of the red rot disease fungi Pythium spp. by polymerase chain reaction. , 2001 .

[61]  G. M. Waterhouse Key to Pythium Pringsheim , 1967 .

[62]  G. Hartman,et al.  Exogenous Controls Increase Negative Call Veracity in Multiplexed, Quantitative PCR Assays for Phakopsora pachyrhizi. , 2011, Plant disease.

[63]  John McNeill,et al.  International Code of Botanical Nomenclature , 1983 .

[64]  M. Kakishima,et al.  Structure and organization of the rDNA intergenic spacer region in Pythium ultimum , 2009 .

[65]  G. Beakes,et al.  The Evolutionary Phylogeny of Oomycetes—Insights Gained from Studies of Holocarpic Parasites of Algae and Invertebrates , 2008 .

[66]  Ning Zhang,et al.  Dimeric oligonucleotide probes enhance diagnostic macroarray performance. , 2011, Journal of microbiological methods.

[67]  F. Martin Maternal inheritance of mitochondrial DNA in sexual crosses of Pythium sylvaticumm , 1989, Current Genetics.

[68]  E. Davison,et al.  Pythium spp. from cavity spot and other root diseases of Australian carrots , 2003, Australasian Plant Pathology.

[69]  C. Rafin,et al.  Restriction analysis of amplified ribosomal DNA of Pythium spp. isolated from soilless culture systems , 1995 .

[70]  D. Honda,et al.  Taxonomy, molecular phylogeny, and ultrastructural morphology of Olpidiopsis porphyrae sp. nov. (Oomycetes, straminipiles), a unicellular obligate endoparasite of Bangia and Porphyra spp. (Bangiales, Rhodophyta). , 2008, Mycological research.

[71]  E. Nelson,et al.  Phylogenetic and morphological analyses of Pythium graminicola and related species , 2005, Journal of General Plant Pathology.

[72]  D. Hawksworth,et al.  Managing and coping with names of pleomorphic fungi in a period of transition, , 2012, IMA fungus.

[73]  T. Paulitz,et al.  The formation of secondary sporangia by Pythium ultimum: The influence of organic amendments and Pythium nunn , 1988 .

[74]  J. Guillot,et al.  Taxonomic and phylogenetic analysis of Saprolegniaceae (Oomycetes) inferred from LSU rDNA and ITS sequence comparisons , 2000, Antonie van Leeuwenhoek.

[75]  D. Geiser,et al.  Diagnosis and Population Analysis of Pythium Species Using AFLP Fingerprinting. , 2005, Plant disease.

[76]  C. Chang,et al.  Detection of the low‐germination‐rate resting oospores of Pythium myriotylum from soil by PCR , 2003, Letters in applied microbiology.

[77]  G. Yuen,et al.  A Sensitive ELISA for Pythium ultimum Using Polyclonal and Species-Specific Monoclonal Antibodies. , 1998, Plant disease.

[78]  M. Hyakumachi,et al.  Phylogenetic relationships ofPythium species based on ITS and 5.8S sequences of the ribosomal DNA , 1999 .

[79]  C. Rafin,et al.  Immuno-enzymatic staining procedure for Pythium species with filamentous non-inflated sporangia in soilless cultures , 1994 .

[80]  F. Martin,et al.  SOILBORNE PLANT DISEASES CAUSED BY PYTHIUM SPP: ECOLOGY, EPIDEMIOLOGY, AND PROSPECTS FOR BIOLOGICAL CONTROL , 1999 .

[81]  Russell D. Monds,et al.  Identification of Pythium oligandrum using species-specific ITS rDNA PCR oligonucleotides. , 2003, Mycological research.

[82]  C. Lévesque,et al.  Multigene phylogenetic analyses to delimit new species in fungal plant pathogens. , 2012, Methods in molecular biology.

[83]  P. Butterworth,et al.  Genetic and pathogenic variation among cereal, medic and sub-clover isolates of Pythium irregulare , 2001 .

[84]  I. Merwin,et al.  Microbial community development in the rhizosphere of apple trees at a replant disease site , 2007 .

[85]  P. Okubara,et al.  Improved extraction of Rhizoctonia and Pythium DNA from wheat roots and soil samples using pressure cycling technology , 2007 .

[86]  C. Lévesque,et al.  Molecular phylogeny and taxonomy of the genus Pythium. , 2004, Mycological research.

[87]  H. Abdelzaher,et al.  Using of RAPD-PCR for Separation of Pythium spinosum Sawada into Two Varieties: Var. spinosum and var. sporangiiferum. , 2002 .

[88]  S. Warwick,et al.  Isozyme variation, morphology, and growth response to temperature in Pythium ultimum , 1996 .

[89]  M. Weiß,et al.  Phylogenetic studies of Saprolegniomycetidae and related groups based on nuclear large subunit ribosomal DNA sequences , 1999 .

[90]  Stefan Wagner,et al.  Development of a lab-on-a-chip device for diagnosis of plant pathogens. , 2011, Biosensors & bioelectronics.

[91]  F. Lefort,et al.  Pythium recalcitrans sp. nov. revealed by multigene phylogenetic analysis. , 2008, Mycologia.

[92]  S. Koike,et al.  Development of an assay for rapid detection and quantification of Verticillium dahliae in soil. , 2012, Phytopathology.

[93]  R. Hamelin,et al.  Evaluation of molecular markers for Phytophthora ramorum detection and identification: testing for specificity using a standardized library of isolates. , 2009, Phytopathology.

[94]  Y. Brygoo,et al.  Molecular characterization of Pythium group F isolates by ribosomal-and intermicrosatellite-DNA regions analysis , 2005, European Journal of Plant Pathology.

[95]  F. Küpper,et al.  Phylogenetic affinities of two eukaryotic pathogens of marine macroalgae, Eurychasma dicksonii (Wright) Magnus and Chytridium polysiphoniae Cohn , 2006 .

[96]  V. Beneš,et al.  The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments. , 2009, Clinical chemistry.

[97]  F. Martin,et al.  Meiotic instability of Pythium sylvaticum as demonstrated by inheritance of nuclear markers and karyotype analysis. , 1995, Genetics.

[98]  K. Mendgen,et al.  Diversity, host, and habitat specificity of oomycete communities in declining reed stands (Phragmites australis) of a large freshwater lake. , 2008, Mycological research.

[99]  T. Krajaejun,et al.  Random amplified polymorphic DNA typing and phylogeny of Pythium insidiosum clinical isolates in Thailand. , 2007, The Southeast Asian journal of tropical medicine and public health.

[100]  K. Ishiguro,et al.  Intra-isolate heterogeneity of the ITS region of rDNA in Pythium helicoides. , 2007, Mycological research.

[101]  K. Hatai,et al.  Visceral Mycosis in Ayu Plecoglossus altivelis Larvae Caused by Pythium flevoense , 2010 .

[102]  M. Hyakumachi,et al.  Characterization of the Hyphal Swelling Group of Pythium: DNA Polymorphisms and Cultural and Morphological Characteristics. , 1998, Plant disease.

[103]  Josef K. Müller,et al.  Resolving phylogeny at the family level by mitochondrial cytochrome oxidase sequences: phylogeny of carrion beetles (Coleoptera, Silphidae). , 2000, Molecular phylogenetics and evolution.

[104]  K. Kageyama,et al.  Development of Multiplex PCR to Detect Five Pythium Species Related to Turfgrass Diseases , 2010 .

[105]  C. Lévesque,et al.  Identification of some oomycetes by reverse dot blot hybridization. , 1998, Phytopathology.

[106]  D. Baillie,et al.  Pathogenicity and DNA restriction fragment length polymorphisms of isolates of Pythium spp. from glyphosatetreated seedlings , 1993 .

[107]  M. Mazzola,et al.  Characterisation and detection of Pythium and Phytophthora species associated with grapevines in South Africa , 2011, European Journal of Plant Pathology.

[108]  A. J. Plaats-Niterink Monograph of the genus Pythium , 1981 .

[109]  Sara H. Thomas,et al.  The ecology and phylogeny of oomycete infections in Asplanchna rotifers , 2011 .

[110]  M. Guibert,et al.  The ecology of a Pythium community in relation to the epidemiology of carrot cavity spot , 2007 .

[111]  C. Garzon,et al.  Pythium cryptoirregulare, a new species within the P. irregulare complex. , 2007, Mycologia.

[112]  G. Klassen,et al.  Detection of length heterogeneity in the ribosomal DNA of Pythium ultimum by PCR amplification of the intergenic region , 1990, Current Genetics.

[113]  C. Hong,et al.  Direct colony PCR-SSCP for detection of multiple pythiaceous oomycetes in environmental samples. , 2005, Journal of microbiological methods.

[114]  D. Maclean,et al.  Molecular characterisation, pathogenesis and fungicide sensitivity of Pythium spp. from table beet (Beta vulgaris var. vulgaris) grown in the Lockyer Valley, Queensland , 2005, Australasian Plant Pathology.

[115]  D. Geiser,et al.  Amplified Fragment Length Polymorphism Analysis and Internal Transcribed Spacer and coxII Sequences Reveal a Species Boundary Within Pythium irregulare. , 2005, Phytopathology.

[116]  D. Honda,et al.  Molecular phylogeny of an unidentified Haliphthoros-like marine oomycete and Haliphthoros milfordensis inferred from nuclear-encoded small- and large-subunit rRNA genes and mitochondrial-encoded cox2 gene , 2007, Mycoscience.

[117]  G. Klassen,et al.  Subrepeat structure of the intergenic region in the ribosomal DNA of the oomycetous fungus Pythium ultimum , 1990, Current Genetics.

[118]  J. Vallance,et al.  Rhizosphere persistence of three Pythium oligandrum strains in tomato soilless culture assessed by DNA macroarray and real-time PCR. , 2007, FEMS microbiology ecology.

[119]  C. Lévesque,et al.  Identification and Quantification of Pathogenic Pythium spp. from Soils in Eastern Washington Using Real-Time Polymerase Chain Reaction. , 2006, Phytopathology.

[120]  Weidong Chen Restriction fragment length polymorphisms in enzymatically amplified ribosomal DNAs of three heterothallic Pythium species , 1992 .

[121]  C. Lévesque,et al.  Fifty years of oomycetes—from consolidation to evolutionary and genomic exploration , 2011, Fungal Diversity.

[122]  J. G. White,et al.  Molecular characterization of Pythium species based on RFLP analysis of the internal transcribed spacer region of ribosomal DNA , 1997 .

[123]  P. Paul,et al.  Characterization of Pythium spp. Associated with Corn and Soybean Seed and Seedling Disease in Ohio. , 2007, Plant disease.

[124]  M. Mazzola,et al.  Molecular analyses of Pythium irregulare isolates from grapevines in South Africa suggest a single variable species. , 2011, Fungal biology.

[125]  B. Thomma,et al.  Quantitative assessment of phytopathogenic fungi in various substrates using a DNA macroarray. , 2005, Environmental microbiology.

[126]  Velma D. Matthews Studies on the Genus Pythium , 1932, Nature.

[127]  A. Logrieco,et al.  One fungus, one name: defining the genus Fusarium in a scientifically robust way that preserves longstanding use. , 2013, Phytopathology.

[128]  H. Amano,et al.  Genetic variation detected with random amplified polymorphic DNA markers among isolates of the red rot disease fungus Pythium porphyrae isolated from Porphyra yezoensis from Korea and Japan , 2003 .

[129]  M. Tojo,et al.  Distribution of Pythium porphyrae, the Causal Agent of Red Rot Disease of Porphyrae spp., in the Ariake Sea, Japan. , 2005, Plant disease.

[130]  T. White Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics , 1990 .

[131]  J. Meens,et al.  Morphological and molecular identification of some closely related Pythium species in Egypt , 2005 .

[132]  F. Martin,et al.  Variation in the ribosomal DNA repeat unit within single-oospore isolates of the genus Pythium , 1990 .

[133]  Hideki Takahashi,et al.  Colonization of Pythium oligandrum in the tomato rhizosphere for biological control of bacterial wilt disease analyzed by real-time PCR and confocal laser-scanning microscopy. , 2008, Phytopathology.

[134]  C. Hong,et al.  Single-strand-conformation polymorphism of ribosomal DNA for rapid species differentiation in genus Phytophthora. , 2003, Fungal genetics and biology : FG & B.

[135]  D. Barr,et al.  Pythium sp. "group G", a form of Pythium ultimum causing damping-off of safflower , 1992 .

[136]  M. Höfte,et al.  Intraspecific variability of Pythium myriotylum isolated from cocoyam and other host crops. , 2006, Mycological research.

[137]  G. Klassen,et al.  The 5S ribosomal RNA gene in Pythium species: two different genomic locations. , 1992, Molecular biology and evolution.

[138]  M. Kakishima,et al.  Pythium apinafurcum: its morphology, molecular phylogeny, and infectivity for plants , 2009, Mycoscience.

[139]  I. Merwin,et al.  Soil fumigation and compost amendment alter soil microbial community composition but do not improve tree growth or yield in an apple replant site , 2006 .

[140]  Chan Sun Park Rapid detection of Pythium porphyrae in commercial samples of dried Porphyra yezoensis sheets by polymerase chain reaction , 2006, Journal of Applied Phycology.

[141]  S. Hoke,et al.  Quantification of Pythium populations in ginseng soils by culture dependent and real-time PCR methods , 2008 .

[142]  C. Lévesque,et al.  Development of a species-specific probe for Pythium ultimum using amplified ribosomal DNA , 1994 .

[143]  Stagg Da,et al.  Genetic variation in homothallic and hyphal swelling isolates of Pythium ultimum var. ultimum and P. utlimum var. sporangiferum. , 1994 .

[144]  K. Mendgen,et al.  Evidence for the occurrence of natural hybridization in reed‐associated Pythium species , 2009 .

[145]  K. Kageyama,et al.  Phylogenetic relationships of Pythium and Phytophthora species based on ITS rDNA, cytochrome oxidase II and beta-tubulin gene sequences. , 2006, Mycologia.

[146]  P. van West,et al.  New insights into animal pathogenic oomycetes. , 2008, Trends in microbiology.

[147]  S. Tsushima,et al.  Characterization of two morphological groups of isolates ofPythium ultimum var.ultimum in a vegetable field , 1998 .

[148]  S. Rosendahl,et al.  Phylogeny of the Peronosporomycetes (Oomycota) based on partial sequences of the large ribosomal subunit (LSU rDNA) , 2000 .

[149]  K. Katoh,et al.  MAFFT version 5: improvement in accuracy of multiple sequence alignment , 2005, Nucleic acids research.

[150]  K. Kageyama,et al.  Development of microsatellite markers for Pythium helicoides. , 2009, FEMS microbiology letters.

[151]  N. Benhamou,et al.  Interactions between the mycoparasite Pythium oligandrum and two types of sclerotia of plant-pathogenic fungi. , 2005, Mycological research.

[152]  K. Kageyama,et al.  Development of real-time PCR technique for the estimation of population density of Pythium intermedium in forest soils. , 2010, Microbiological research.

[153]  F. Lefort,et al.  Intraspecific and within-isolate sequence variation in the ITS rRNA gene region of Pythium mercuriale sp. nov. (Pythiaceae). , 2008, FEMS microbiology letters.

[154]  F. Martin Taxonomic classification of asexual isolates of Pythium ultimum based on cultural characteristics and mitochondrial DNA restriction patterns. , 1990 .

[155]  R. Cook,et al.  Infection of wheat embryos by Pythium species during seed germination and the influence of seed age and soil matric potential , 1987 .

[156]  T. Paulitz,et al.  Composition and distribution of pythium communities in wheat fields in eastern washington state. , 2003, Phytopathology.

[157]  M. Nei,et al.  MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. , 2011, Molecular biology and evolution.

[158]  P. Butterworth,et al.  Genetic variation among populations of Pythium irregulare in southern Australia , 2000 .

[159]  M. Mazzola,et al.  Hybridization of an ITS-based macroarray with ITS community probes for characterization of complex communities of fungi and fungal-like protists. , 2009, Mycological research.

[160]  M. Hyakumachi,et al.  Intraspecific DNA polymorphisms of Pythium irregulare , 2000 .

[161]  M. Sogin,et al.  Sequence Analysis of the Small Subunit Ribosomal Rnas of Three Zoosporic Fungi and Implications for Fungal Evolution , 1990 .

[162]  R. Schneider,et al.  Species-specific polymorphisms in transcribed ribosomal DNA of fivePythium species , 1992 .

[163]  G. Bateman,et al.  Microbiota in Wheat Roots Evaluated by Cloning of ITS1/2 rDNA and Sequencing , 2010 .

[164]  K. Kageyama,et al.  Development of SCAR markers and PCR assays for single or simultaneous species-specific detection of Phytophthora nicotianae and Pythium helicoides in ebb-and-flow irrigated kalanchoe. , 2010, Journal of microbiological methods.

[165]  O. Gascuel,et al.  New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. , 2010, Systematic biology.

[166]  Weidong Chen,et al.  Molecular and morphological comparison of Pythium arrhenomanes and P. graminicola , 1993 .

[167]  Maria L. Herrero,et al.  PCR‐based identification of Pythium spp. causing cavity spot in carrots and sensitive detection in soil samples , 2008 .

[168]  Bernard Henrissat,et al.  Genome sequence of the necrotrophic plant pathogen Pythium ultimum reveals original pathogenicity mechanisms and effector repertoire , 2010, Genome Biology.

[169]  Y. Yeh,et al.  Use of polymerase chain reaction to detect the soft rot pathogen, Pythium myriotylum, in infected ginger rhizomes , 2003, Letters in applied microbiology.

[170]  M. Dickinson,et al.  A five-minute DNA extraction method for expedited detection of Phytophthora ramorum following prescreening using Phytophthora spp. lateral flow devices. , 2010, Journal of microbiological methods.

[171]  M. Tojo,et al.  Modifications of PARP Medium Using Fluazinam, Miconazole, and Nystatin for Detection of Pythium spp. in Soil. , 2007, Plant Disease.

[172]  L. M. Daniels,et al.  Removal of PCR inhibitors from soil DNA by chemical flocculation. , 2003, Journal of microbiological methods.