Computer simulation of quantum effects in Tavis-Cummings model and its applications

We describe computer methods of simulation of Tavis-Cummings based quantum models, and apply those methods to specific tasks, conductivity measurements of atomic excitations in short chains of optical cavities with two-level atoms, C-Sign optical model, and dark states. For the conductivity measurements, we reproduce the dephasing assisted transport and quantum bottleneck effects and show their relation, and study the "which way?" problem. For the C-Sign optical model, we use the model to find optimal parameters of the system to minimize the error. For dark states, we study their collapse due to dephasing noise.

[1]  Coherence protection by the quantum Zeno effect and nonholonomic control in a Rydberg rubidium isotope , 2004, quant-ph/0403227.

[2]  J. Hubbard Electron correlations in narrow energy bands , 1963, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[3]  Christino Tamon,et al.  Mixing and decoherence in continuous-time quantum walks on cycles , 2006, Quantum Inf. Comput..

[4]  E. Jaynes,et al.  Comparison of quantum and semiclassical radiation theories with application to the beam maser , 1962 .

[5]  Klein,et al.  Observation of quantum collapse and revival in a one-atom maser. , 1987, Physical review letters.

[6]  A. Greentree,et al.  Time evolution of the one-dimensional Jaynes-Cummings-Hubbard Hamiltonian , 2009, 0907.0539.

[7]  James Franck,et al.  Elementary processes of photochemical reactions , 1926 .

[8]  G. Milburn,et al.  Linear optical quantum computing with photonic qubits , 2005, quant-ph/0512071.

[9]  Aharonov,et al.  Quantum Walks , 2012, 1207.7283.

[10]  E. Knill,et al.  A scheme for efficient quantum computation with linear optics , 2001, Nature.

[11]  W. Marsden I and J , 2012 .

[12]  S. Huelga,et al.  Vibrations, quanta and biology , 2013, 1307.3530.

[13]  Y. Ozhigov,et al.  Simulation of a relaxation of electron shells of a pair of two-level atoms in qubit representation , 2014 .

[14]  E. Condon A Theory of Intensity Distribution in Band Systems , 1926 .

[15]  Francesco Petruccione,et al.  The Theory of Open Quantum Systems , 2002 .

[16]  E. Condon,et al.  A Theory of Intensity Distribution in Band Systems , 1991 .

[17]  Kun Huang,et al.  Theory of light absorption and non-radiative transitions in F-centres , 1950, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[18]  S. Huelga,et al.  Dephasing-assisted transport in linear triple quantum dots , 2014, 1407.0924.

[19]  Quantum computation with Jaynes-Cummings model , 2008, 0808.3027.

[20]  S. A. Moiseev,et al.  A quantum computer in the scheme of an atomic quantum transistor with logical encoding of qubits , 2013, Optics and Spectroscopy.

[21]  A. Kossakowski,et al.  On quantum statistical mechanics of non-Hamiltonian systems , 1972 .

[22]  G. Lindblad On the generators of quantum dynamical semigroups , 1976 .

[23]  Michael Knap,et al.  Emission characteristics of laser-driven dissipative coupled-cavity systems , 2010, 1011.2760.

[24]  M. B. Plenio,et al.  Dephasing-assisted transport: quantum networks and biomolecules , 2008, 0807.4902.