Deep Learning meets Topology-preserving Active Contours: towards scalable quantitative histology of cortical cytoarchitecture

Deep learning has thoroughly changed the field of image analysis yielding impressive results whenever enough annotated data can be gathered. While partial annotation can be very fast, manual segmentation of biological structures is tedious and error-prone. Additionally, high-level shape concepts such as topology or boundary smoothness are hard if not impossible to encode in Feedforward Neural Networks. Here we present a modular strategy for the accurate segmentation of neural cell bodies from light-sheet microscopy combining deep learning and topology-preserving geometric deformable models. We show that the network can be trained efficiently from simple cell centroid annotations, and that the final segmentation provides accurate detection and smooth segmentations, without introducing cell splitting or merging.

[1]  A. Schleicher,et al.  21 – Quantitative Analysis of Cyto- and Receptor Architecture of the Human Brain , 2002 .

[2]  Nico Scherf,et al.  Developing 3D microscopy with CLARITY on human brain tissue: Towards a tool for informing and validating MRI-based histology , 2017, NeuroImage.

[3]  Ullrich Köthe,et al.  Ilastik: Interactive learning and segmentation toolkit , 2011, 2011 IEEE International Symposium on Biomedical Imaging: From Nano to Macro.

[4]  F. Del Bene,et al.  Optical Sectioning Deep Inside Live Embryos by Selective Plane Illumination Microscopy , 2004, Science.

[5]  Christoph Meinel,et al.  Deep Learning for Medical Image Analysis , 2018, Journal of Pathology Informatics.

[6]  Thomas Brox,et al.  U-Net: Convolutional Networks for Biomedical Image Segmentation , 2015, MICCAI.

[7]  Guigang Zhang,et al.  Deep Learning , 2016, Int. J. Semantic Comput..

[8]  Matthew D. Zeiler ADADELTA: An Adaptive Learning Rate Method , 2012, ArXiv.

[9]  K. Deisseroth,et al.  CLARITY for mapping the nervous system , 2013, Nature Methods.

[10]  Andrew Zisserman,et al.  Microscopy cell counting and detection with fully convolutional regression networks , 2018, Comput. methods Biomech. Biomed. Eng. Imaging Vis..

[11]  K. Brodmann Vergleichende Lokalisationslehre der Großhirnrinde : in ihren Prinzipien dargestellt auf Grund des Zellenbaues , 1985 .

[12]  Xiao Han,et al.  A Topology Preserving Level Set Method for Geometric Deformable Models , 2003, IEEE Trans. Pattern Anal. Mach. Intell..

[13]  A. Lutti,et al.  Advances in MRI-based computational neuroanatomy: from morphometry to in-vivo histology. , 2015, Current opinion in neurology.

[14]  H. Sebastian Seung,et al.  Trainable Weka Segmentation: a machine learning tool for microscopy pixel classification , 2017, Bioinform..

[15]  Bostjan Likar,et al.  Model-Based Segmentation of Vertebral Bodies from MR Images with 3D CNNs , 2016, MICCAI.

[16]  Fabian J. Theis,et al.  fastER: a user‐friendly tool for ultrafast and robust cell segmentation in large‐scale microscopy , 2017, Bioinform..

[17]  A. Schierloh,et al.  Ultramicroscopy: three-dimensional visualization of neuronal networks in the whole mouse brain , 2007, Nature Methods.

[18]  G. Smith,et al.  Die Cytoarchitektonik der Hirnrinde des erwachsenen Menschen. , 1927 .

[19]  Jerry L. Prince,et al.  A multiple object geometric deformable model for image segmentation , 2013, Comput. Vis. Image Underst..

[20]  William M. Wells,et al.  Medical Image Computing and Computer-Assisted Intervention — MICCAI’98 , 1998, Lecture Notes in Computer Science.