Computational evidence in favor of a two-state, two-mode model of the retinal chromophore photoisomerization.

In this paper we use ab initio multiconfigurational second-order perturbation theory to establish the intrinsic photoisomerization path model of retinal chromophores. This is accomplished by computing the ground state (S(0)) and the first two singlet excited-state (S(1), S(2)) energies along the rigorously determined photoisomerization coordinate of the rhodopsin chromophore model 4-cis-gamma-methylnona-2,4,6,8-tetraeniminium cation and the bacteriorhodopsin chromophore model all-trans-hepta-2,4, 6-trieniminium cation in isolated conditions. The computed S(2) and S(1) energy profiles do not show any avoided crossing feature along the S(1) reaction path and maintain an energy gap >20 kcal small middle dotmol(-1). In addition, the analysis of the charge distribution shows that there is no qualitative change in the S(2) and S(1) electronic structure along the path. Thus, the S(1) state maintains a prevalent ionic (hole-pair) character whereas the S(2) state maintains a covalent (dot-dot) character. These results, together with the analysis of the S(1) reaction coordinate, support a two-state, two-mode model of the photoisomerization that constitutes a substantial revision of the previously proposed models.

[1]  Marco Garavelli,et al.  Initial Excited-State Relaxation of the Isolated 11-cis Protonated Schiff Base of Retinal: Evidence for in-Plane Motion from ab Initio Quantum Chemical Simulation of the Resonance Raman Spectrum , 1999 .

[2]  Bjoern O. Roos Theoretical Studies of Electronically Excited States of Molecular Systems Using Multiconfigurational Perturbation Theory , 1999 .

[3]  Shankar Subramaniam,et al.  Sequences and Structures of Retinal Proteins , 1995 .

[4]  Young S. Choi,et al.  The 2 1Ag state of trans,trans‐1,3,5,7‐octatetraene in free jet expansions , 1993 .

[5]  R. Hochstrasser,et al.  EXCITED STATE DYNAMICS OF BACTERIORHODOPSIN REVEALED BY TRANSIENT STIMULATED EMISSION SPECTRA , 1996 .

[6]  R. Hochstrasser,et al.  Femtosecond Polarized Pump-Probe and Stimulated Emission Spectroscopy of the Isomerization Reaction of Rhodopsin , 1999 .

[7]  Wolfgang Kaiser,et al.  Excited-state reaction dynamics of bacteriorhodopsin studied by femtosecond spectroscopy , 1988 .

[8]  Hideki Kandori,et al.  Excited-state dynamics of a protonated Schiff base of all-trans retinal in methanol probed by femtosecond fluorescence measurement , 1993 .

[9]  R. Becker THE VISUAL PROCESS: PHOTOPHYSICS and PHOTOISOMERIZATION OF MODEL VISUAL PIGMENTS and THE PRIMARY REACTION , 1988, Photochemistry and photobiology.

[10]  G. Kochendoerfer,et al.  How color visual pigments are tuned. , 1999, Trends in biochemical sciences.

[11]  M. Sheves,et al.  Microsecond atomic force sensing of protein conformational dynamics: implications for the primary light-induced events in bacteriorhodopsin. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[12]  M. El-Sayed,et al.  Primary Step in Bacteriorhodopsin Photosynthesis: Bond Stretch Rather than Angle Twist of Its Retinal Excited-State Structure , 1998 .

[13]  T. Kouyama,et al.  Rhodopsin Emission in Real Time: A New Aspect of the Primary Event in Vision , 1998 .

[14]  R. Becker,et al.  Comparative investigation of the photoisomerization of the protonated and unprotonated n-butylamine Schiff bases of 9-cis-, 11-cis-, 13-cis-, and all-trans-retinals , 1986 .

[15]  B. Honig,et al.  Cis-trans isomerization in the photochemistry of vision , 1977 .

[16]  A. Warshel,et al.  A new view of the dynamics of singlet cis-trans photoisomerization , 1979 .

[17]  Marco Garavelli,et al.  The C 5 H 6 NH 2 + Protonated Shiff Base: An ab Initio Minimal Model for Retinal Photoisomerization , 1997 .

[18]  Hideki Kandori,et al.  Femtosecond fluorescence study of the rhodopsin chromophore in solution , 1995 .

[19]  J. Michl,et al.  Prediction of structural and environmental effects on the S1S0 energy gap and jump probability in double-bond cis—trans photoisomeriz , 1984 .

[20]  L. Curtiss,et al.  Intermolecular interactions from a natural bond orbital, donor-acceptor viewpoint , 1988 .

[21]  B. Honig,et al.  Temperature and wavelength effects on the photochemistry of rhodopsin, isorhodopsin, bacteriorhodopsin and their photoproducts , 1977, Nature.

[22]  A. Warshel,et al.  The dynamics of the primary event in rhodopsins revisited , 1991 .

[23]  Dieter Oesterhelt,et al.  Femtosecond spectroscopy of the photoisomerisation of the protonated Schiff base of all-trans retinal , 1996 .

[24]  Stephan L. Logunov,et al.  EXCITED-STATE DYNAMICS OF A PROTONATED RETINAL SCHIFF BASE IN SOLUTION , 1996 .

[25]  Thom Vreven,et al.  Potential-energy surfaces for ultrafast photochemistry Static and dynamic aspects , 1998 .

[26]  C. Hayden,et al.  Femtosecond time-resolved photoionization and photoelectron spectroscopy studies of ultrafast internal conversion in 1,3,5-hexatriene , 1996 .

[27]  P. Anfinrud,et al.  The photoisomerization of retinal in bacteriorhodospin: experimental evidence for a three-state model. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[28]  L. Stryer,et al.  Retinal has a highly dipolar vertically excited singlet state: implications for vision. , 1976, Proceedings of the National Academy of Sciences of the United States of America.

[29]  Thom Vreven,et al.  Photoisomerization Path for a Realistic Retinal Chromophore Model: The Nonatetraeniminium Cation , 1998 .

[30]  Per-Olof Widmark,et al.  Density matrix averaged atomic natural orbital (ANO) basis sets for correlated molecular wave functions , 1995 .

[31]  M. El-Sayed,et al.  LOW-TEMPERATURE RETINAL PHOTOISOMERIZATION DYNAMICS IN BACTERIORHODOPSIN , 1998 .

[32]  G. J. Perreault,et al.  Picosecond and steady state, variable intensity and variable temperature emission spectroscopy of bacteriorhodopsin. , 1978, Biophysical journal.

[33]  L. Stryer,et al.  Resonance Raman studies of the conformation of retinal in rhodopsin and isorhodopsin. , 1977, Journal of molecular biology.

[34]  K. Schulten,et al.  Molecular Dynamics Studies of Bacteriorhodopsin's Photocycles , 1995 .

[35]  B. Hudson,et al.  Polyene spectroscopy: The lowest energy excited singlet state of diphenyloctatetraene and other linear polyenes , 1973 .

[36]  C. H. Brito Cruz,et al.  Direct observation of the femtosecond excited-state cis-trans isomerization in bacteriorhodopsin. , 1988, Science.

[37]  Y. Shichida,et al.  Deuterium substitution effect on the excited-state dynamics of rhodopsin , 1998 .

[38]  P. Anfinrud,et al.  Chemical dynamics in proteins: the photoisomerization of retinal in bacteriorhodopsin. , 1998, Science.

[39]  Thom Vreven,et al.  Ab Initio Photoisomerization Dynamics of a Simple Retinal Chromophore Model , 1997 .

[40]  Q. Zhong,et al.  Reexamining the Primary Light-Induced Events in Bacteriorhodopsin Using a Synthetic C13C14-Locked Chromophore , 1996 .

[41]  R. Mathies,et al.  Excited-state structure and isomerization dynamics of the retinal chromophore in rhodopsin from resonance Raman intensities. , 1988, Biophysical journal.

[42]  R A Mathies,et al.  The first step in vision: femtosecond isomerization of rhodopsin. , 1991, Science.

[43]  Josef Michl,et al.  Neutral and Charged Biradicals, Zwitterions, Funnels in S1, and Proton Translocation: Their Role in Photochemistry, Photophysics, and Vision , 1987 .

[44]  J. Michl,et al.  Critically heterosymmetric biradicaloid geometries of of protonated Schiff bases , 1987 .

[45]  S. L. Bondarev,et al.  Fluorescence properties of protonated and unprotonated Schiff bases of retinal at room temperature , 1996 .

[46]  A. Bell,et al.  Fluorescence excitation spectra of the S1 states of isolated trienes , 1992 .