0.13 $\mu$ m SiGe BiCMOS Technology Fully Dedicated to mm-Wave Applications

This paper presents a complete 0.13 μm SiGe BiCMOS technology fully dedicated to millimeter-wave applications, including a high-speed (230/280 GHz fT/fMAX) and medium voltage SiGe HBT, thick-copper back-end designed for high performance transmission lines and inductors, 2 fF/μm2 high-linearity MIM capacitor and complementary double gate oxide MOS transistors. Details are given on HBT integration, reliability and models as well as on back-end devices models.

[1]  P. Chevalier,et al.  0.13μm SiGe BiCMOS technology for mm-wave applications , 2008, 2008 IEEE Bipolar/BiCMOS Circuits and Technology Meeting.

[2]  P. Chevalier,et al.  300 GHz f/sub max/ self-aligned SiGeC HBT optimized towards CMOS compatiblity , 2005, Proceedings of the Bipolar/BiCMOS Circuits and Technology Meeting, 2005..

[3]  A. Tomkins,et al.  Circuit performance characterization of digital 45-nm CMOS technology for applications around 110 GHz , 2008, 2008 IEEE Symposium on VLSI Circuits.

[4]  P. Garcia,et al.  Low Noise Low Cost Rx Solutions for Pulsed 24GHz Automotive Radar Sensors , 2007, 2007 IEEE Radio Frequency Integrated Circuits (RFIC) Symposium.

[5]  I. Sarkas,et al.  W-band 65-nm CMOS and SiGe BiCMOS transmitter and receiver with lumped I-Q phase shifters , 2009, 2009 IEEE Radio Frequency Integrated Circuits Symposium.

[6]  D. Knoll,et al.  SiGe BiCMOS Technology with 3.0 ps Gate Delay , 2007, 2007 IEEE International Electron Devices Meeting.

[7]  Yves Rolain,et al.  A 57-to-66GHz quadrature PLL in 45nm digital CMOS , 2009, 2009 IEEE International Solid-State Circuits Conference - Digest of Technical Papers.

[8]  J. D. Burnett,et al.  Modeling hot-carrier effects in polysilicon emitter bipolar transistors , 1988 .

[9]  D. Celi,et al.  From measurement to intrinsic device characteristics: Test structures and parasitic determination , 2008, 2008 IEEE Bipolar/BiCMOS Circuits and Technology Meeting.

[10]  P. Garcia,et al.  A Wideband W-Band Receiver Front-End in 65-nm CMOS , 2008, IEEE Journal of Solid-State Circuits.

[11]  J. L. Showell,et al.  A scalable high-frequency noise model for bipolar transistors with application to optimal transistor sizing for low-noise amplifier design , 1997 .

[12]  T. Kleinpenning,et al.  Low-Frequency Noise in Polysilicon Emitter Bipolar Transistors , 1994, ESSDERC '94: 24th European Solid State Device Research Conference.

[13]  P. Chevalier,et al.  A Low-Voltage SiGe BiCMOS 77-GHz Automotive Radar Chipset , 2008, IEEE Transactions on Microwave Theory and Techniques.

[14]  M. Khater,et al.  A BiCMOS Technology Featuring a 300/330 GHz (fT/fmax) SiGe HBT for Millimeter Wave Applications , 2006, 2006 Bipolar/BiCMOS Circuits and Technology Meeting.

[15]  Pascal Chevalier,et al.  Impact of inside spacer process on fully self-aligned 250 GHz SiGe: C HBTs reliability performances: a-Si vs. nitride , 2008, Microelectron. Reliab..

[16]  P. Chevalier,et al.  High-Speed SiGe BiCMOS Technologies: 120-nm Status and End-of-Roadmap Challenges , 2007, 2007 Topical Meeting on Silicon Monolithic Integrated Circuits in RF Systems.

[17]  Katsuyoshi Washio DC and low-frequency-noise characterization of epitaxially grown raised-emitter SiGe HBTs , 2008 .

[18]  T. Yao,et al.  SiGe BiCMOS 65-GHz BPSK transmitter and 30 to 122 GHz LC-varactor VCOs with up to 21% tuning range , 2004, IEEE Compound Semiconductor Integrated Circuit Symposium, 2004..