The Ensemble Photometric Variability of ~25,000 Quasars in the Sloan Digital Sky Survey

Using a sample of over 25,000 spectroscopically confirmed quasars from the Sloan Digital Sky Survey, we show how quasar variability in the rest-frame optical/UV regime depends on rest-frame time lag, luminosity, rest wavelength, redshift, the presence of radio and X-ray emission, and the presence of broad absorption line systems. Imaging photometry is compared with three-band spectrophotometry obtained at later epochs spanning time lags up to about 2 yr. The large sample size and wide range of parameter values allow the dependence of variability to be isolated as a function of many independent parameters. The time dependence of variability (the structure function) is well fitted by a single power law with an index γ = 0.246 ± 0.008, on timescales from days to years. There is an anticorrelation of variability amplitude with rest wavelength—e.g., quasars are about twice as variable at 1000 Å as at 6000 Å—and quasars are systematically bluer when brighter at all redshifts. There is a strong anticorrelation of variability with quasar luminosity—variability amplitude decreases by a factor of about 4 when luminosity increases by a factor of 100. There is also a significant positive correlation of variability amplitude with redshift, indicating evolution of the quasar population or the variability mechanism. We parameterize all of these relationships. Quasars with ROSAT All-Sky Survey X-ray detections are significantly more variable (at optical/UV wavelengths) than those without, and radio-loud quasars are marginally more variable than their radio-quiet counterparts. We find no significant difference in the variability of quasars with and without broad absorption line troughs. Currently, no models of quasar variability address more than a few of these relationships. Models involving multiple discrete events or gravitational microlensing are unlikely by themselves to account for the data. So-called accretion disk instability models are promising, but more quantitative predictions are needed.

[1]  R. Nichol,et al.  The Sloan Digital Sky Survey Quasar Catalog. II. First Data Release , 2003, astro-ph/0308443.

[2]  Robert H. Becker,et al.  Long-Term Variability of Sloan Digital Sky Survey Quasars , 2003 .

[3]  Bhasker K. Moorthy,et al.  The First Data Release of the Sloan Digital Sky Survey , 2003, astro-ph/0305492.

[4]  G. Stinson,et al.  A Large, Uniform Sample of X-Ray-emitting AGNs: Selection Approach and an Initial Catalog from the ROSAT All-Sky and Sloan Digital Sky Surveys , 2003, astro-ph/0305093.

[5]  F. M. Maley,et al.  An Efficient Targeting Strategy for Multiobject Spectrograph Surveys: the Sloan Digital Sky Survey “Tiling” Algorithm , 2001, astro-ph/0105535.

[6]  D. York,et al.  A Catalog of Broad Absorption Line Quasars from the Sloan Digital Sky Survey Early Data Release , 2003, astro-ph/0603070.

[7]  Ž. Ivezić,et al.  Astrometric Calibration of the Sloan Digital Sky Survey , 2002, astro-ph/0211375.

[8]  J. Krolik,et al.  Broad Absorption Line Quasars in the Early Data Release from the Sloan Digital Sky Survey , 2002, astro-ph/0209081.

[9]  Cambridge,et al.  Optical monitoring of the gravitationally lensed quasar Q2237+0305 from APO between June 1995 and January 1998 , 2002, astro-ph/0207117.

[10]  V. Narayanan,et al.  Spectroscopic Target Selection in the Sloan Digital Sky Survey: The Main Galaxy Sample , 2002, astro-ph/0206225.

[11]  E. Turner,et al.  Cosmological Microlensing Statistics: Variability Rates for Quasars and Gamma-Ray Burst Afterglows and Implications for Macrolensing Magnification Bias and Flux Ratios , 2002, astro-ph/0203214.

[12]  et al,et al.  Optical and Radio Properties of Extragalactic Sources Observed by the FIRST Survey and the Sloan Digital Sky Survey , 2002, astro-ph/0202408.

[13]  M. SubbaRao,et al.  Spectroscopic Target Selection in the Sloan Digital Sky Survey: The Quasar Sample , 2002, astro-ph/0202251.

[14]  D. Trèvese,et al.  Quasar Spectral Slope Variability in the Optical Band , 2001, astro-ph/0110075.

[15]  John E. Davis,et al.  Sloan Digital Sky Survey: Early Data Release , 2002 .

[16]  M. Hawkins Variability in active galactic nuclei: confrontation of models with observations , 2001, astro-ph/0110707.

[17]  Bradley M. Peterson Variability of Active Galactic Nuclei , 2001 .

[18]  V. Narayanan,et al.  Spectroscopic Target Selection for the Sloan Digital Sky Survey: The Luminous Red Galaxy Sample , 2001, astro-ph/0108153.

[19]  B. Peterson,et al.  Characteristic Ultraviolet/Optical Timescales in Active Galactic Nuclei , 2001 .

[20]  J. Gunn,et al.  A Photometricity and Extinction Monitor at the Apache Point Observatory , 2001, astro-ph/0106511.

[21]  F. Miller Maley,et al.  An Efficient Algorithm for Positioning Tiles in the Sloan Digital Sky Survey , 2001 .

[22]  E. al.,et al.  Composite Quasar Spectra from the Sloan Digital Sky Survey , 2001, astro-ph/0105231.

[23]  R. Kron,et al.  Continuum Variability of Active Galactic Nuclei in the Optical-Ultraviolet Range , 2000, astro-ph/0012408.

[24]  R. McMahon,et al.  Long-Term Optical Variability of Radio-selected Quasars from the FIRST Survey , 2000, astro-ph/0012442.

[25]  Chicago,et al.  Colors of 2625 Quasars at 0 < z < 5 Measured in the Sloan Digital Sky Survey Photometric System , 2000, astro-ph/0012449.

[26]  Matthew A. Malkan,et al.  Rapid Optical Variability in Active Galactic Nuclei and Quasars , 2000 .

[27]  E. Turner,et al.  Determining the microlens mass function from quasar microlensing statistics , 2000, astro-ph/0008008.

[28]  R. C. Fernandes,et al.  Quasar Variability in the Framework of Poissonian Models , 2000, astro-ph/0007312.

[29]  Walter A. Siegmund,et al.  The Sloan Digital Sky Survey: Technical Summary , 2000, astro-ph/0006396.

[30]  M. Hawkins Quasar variability: correlations with amplitude , 2000, astro-ph/0002368.

[31]  D. Shaffer,et al.  Optical Variability of Radio-Luminous PG Quasars , 2000 .

[32]  R. Terlevich,et al.  Optical monitoring of quasars — I. Variability , 1999, astro-ph/9906418.

[33]  Paul S. Smith,et al.  Long-term optical variability properties of the Palomar–Green quasars , 1999 .

[34]  et al,et al.  The Sloan Digital Sky Survey Photometric Camera , 1998, astro-ph/9809085.

[35]  D. Schlegel,et al.  Maps of Dust Infrared Emission for Use in Estimation of Reddening and Cosmic Microwave Background Radiation Foregrounds , 1998 .

[36]  R. Weymann,et al.  First Results from the Las Campanas QSO Brightness Monitoring Program , 1998 .

[37]  S. Mineshige,et al.  Optical Variability in Active Galactic Nuclei: Starbursts or Disk Instabilities? , 1997, astro-ph/9712006.

[38]  D. Schlegel,et al.  Maps of Dust IR Emission for Use in Estimation of Reddening and CMBR Foregrounds , 1997, astro-ph/9710327.

[39]  C. Megan Urry,et al.  VARIABILITY OF ACTIVE GALACTIC NUCLEI , 1997 .

[40]  Richard L. White,et al.  A Catalog of 1.4 GHz Radio Sources from the FIRST Survey , 1997 .

[41]  Itziar Aretxaga,et al.  QSO variability: probing the starburst model , 1996, astro-ph/9609055.

[42]  Cambridge,et al.  THE QSO VARIABILITY-LUMINOSITY-REDSHIFT RELATION , 1996, astro-ph/9608057.

[43]  M. Fukugita,et al.  The Sloan Digital Sky Survey Photometric System , 1996 .

[44]  U. Torkelsson,et al.  Magnetohydrodynamic instabilities and turbulence in accretion disks , 1996 .

[45]  J. Baldwin,et al.  Optical monitoring of luminous AGN - I. Radio-loud quasars , 1996 .

[46]  E. Giallongo,et al.  The Variability of Quasars. II. Frequency Dependence , 1995, astro-ph/9512159.

[47]  A. D. Nair,et al.  TIMESCALES OF LONG-TERM OPTICAL BASE-LEVEL FLUCTUATIONS IN THREE CLASSES OF AGN , 1995 .

[48]  M. Hawkins Dark Matter from Quasar Microlensing , 1995 .

[49]  M. Bershady,et al.  THE ENSEMBLE VARIABILITY PROPERTIES OF FAINT QSOS , 1994, astro-ph/9407003.

[50]  Richard G. McMahon,et al.  The variability of optically selected quasars , 1994 .

[51]  M. R. S. Hawkins,et al.  Gravitational microlensing, quasar variability and missing matter , 1993, Nature.

[52]  A. Cimatti,et al.  Optical variability of faint quasars , 1993 .

[53]  G. Lewis,et al.  Microlensing light curves: a new and efficient numerical method , 1993 .

[54]  M. Abramowicz,et al.  Variability of the central region in active galactic nuclei , 1992 .

[55]  R. Terlevich,et al.  The starburst model for active galactic nuclei : the broad-line region as supernova remnants evolving in a high-density medium , 1992 .

[56]  E. Giallongo,et al.  Optical Variability of Quasars: Statistics and Cosmological Properties , 1991 .

[57]  A. Kinney,et al.  An Ultraviolet Atlas of Quasar and Blazar Spectra (Kinney+, 1991) , 1991 .

[58]  R Edelson,et al.  Broad-band properties of the CfA Seyfert galaxies. III - Ultraviolet variability , 1990 .

[59]  R. Vio,et al.  Long-Term Variability of a Complete Sample of Quasars , 1990 .

[60]  G. Neugebauer,et al.  The near-infrared variability of a sample of optically selected quasars , 1989 .

[61]  P. O’Brien,et al.  The ultraviolet continuum of quasars – II. Continuum variability , 1988 .

[62]  G. Rieke,et al.  Variability and the nature of QSO optical-infrared continua , 1985 .

[63]  C. Lloyd Optical monitoring of radio sources. , 1984 .

[64]  D. S. Heeschen,et al.  Flicker of extragalactic radio sources at two frequencies , 1984 .

[65]  M. Rees BLACK HOLE MODELS FOR ACTIVE GALACTIC NUCLEI , 1984 .

[66]  A. G. Smith,et al.  Optical variability, absolute luminosity, and the Hubble diagram for QSOs. , 1983 .

[67]  J. B. Oke,et al.  Secondary standard stars for absolute spectrophotometry , 1983 .

[68]  R. Sramek,et al.  Radio properties of optically discovered quasars , 1980 .

[69]  S. Refsdal,et al.  Flux variations of QSO 0957 + 561 A, B and image splitting by stars near the light path , 1979, Nature.

[70]  A. Uomoto,et al.  Image-tube photography of a complete sample of 4C radio sources , 1976 .