INVESTIGATION OF CHAOTIC -TYPE FEATURES IN HYPERSPECTRAL SATELLITE DATA

Hyperspectral images provide detailed spectral information with more than several hundred channels. On the other hand, the high dimensionality in hyperspectral images also causes to classification problems due to the huge ratio between the number of training samples and the features. In this paper, Lyapunov Exponents (LEs) are used to determine chaotic-type structure of EO- 1 Hyperion hyperspectral image, a mixed forest site in Turkey. Experimental results demonstrate that EO-1 Hyperion image has a chaotic structure by checking distribution of Lyapunov Exponents (LEs) and they can be used as discriminative features to improve classification accuracy for hyperspectral images.

[1]  Xiangrong Zhang,et al.  Semisupervised Dimensionality Reduction of Hyperspectral Images via Local Scaling Cut Criterion , 2013, IEEE Geoscience and Remote Sensing Letters.

[2]  F. Lehmann,et al.  HyMap hyperspectral remote sensing to detect hydrocarbons , 2001 .

[3]  Iasonas Kokkinos,et al.  Nonlinear speech analysis using models for chaotic systems , 2005, IEEE Transactions on Speech and Audio Processing.

[4]  Ye Zhang,et al.  Robust Hyperspectral Classification Using Relevance Vector Machine , 2011, IEEE Transactions on Geoscience and Remote Sensing.

[5]  Eckmann,et al.  Liapunov exponents from time series. , 1986, Physical review. A, General physics.

[6]  Emrah Yürüklü,et al.  Chaotic-Type Features for Speech Steganalysis , 2008, IEEE Transactions on Information Forensics and Security.

[7]  Nebiye Musaoglu,et al.  Merging hyperspectral and panchromatic image data: qualitative and quantitative analysis , 2009 .

[8]  Steve McLaughlin,et al.  Is speech chaotic?: invariant geometrical measures for speech data , 1994 .

[9]  F. Martinez,et al.  Detection of chaotic behaviour in speech signals using the largest Lyapunov exponent , 2002, 2002 14th International Conference on Digital Signal Processing Proceedings. DSP 2002 (Cat. No.02TH8628).

[10]  JA Zamudio Exploring for onshore oil seeps with hyperspectral imaging , 2002 .

[11]  U. Parlitz,et al.  Lyapunov exponents from time series , 1991 .

[12]  Xiuping Jia,et al.  Using Hurst and Lyapunov Exponent For Hyperspectral Image Feature Extraction , 2012, IEEE Geoscience and Remote Sensing Letters.

[13]  A. Wolf,et al.  Determining Lyapunov exponents from a time series , 1985 .

[14]  G. Nagalakshmi,et al.  An landcover fuzzy logic classification by maximumlikelihood , 2014, ArXiv.

[15]  James V. Taranik,et al.  Hydrothermal Alteration Mapping at Bodie, California, Using AVIRIS Hyperspectral Data , 1998 .

[16]  Mehmet Emre Çek,et al.  Analysis of observed chaotic data , 2004 .

[17]  Vitaliy A. Yatsenko,et al.  Validation of Hyperspectral Data Classification Models , 2008 .

[18]  G. Shaw,et al.  Signal processing for hyperspectral image exploitation , 2002, IEEE Signal Process. Mag..

[19]  E. Lorenz Deterministic nonperiodic flow , 1963 .

[20]  G. Carter,et al.  Early detection of plant stress by digital imaging within narrow stress-sensitive wavebands , 1994 .