A novel Sporothrix brasiliensis genomic variant in Midwestern Brazil: evidence for an older and wider sporotrichosis outbreak

Sporotrichosis is a subcutaneous infection caused by fungi from the genus Sporothrix. The disease is transmitted by inoculation of infective particles found in plant-contaminated material or diseased animals, characterizing the classic sapronotic and emerging zoonotic transmission, respectively. Since 1998, Brazil has experienced a zoonotic sporotrichosis epidemic due to S. brasiliensis, centered in the state of Rio de Janeiro. Our observation of feline sporotrichosis cases in Brasilia (Midwestern Brazil), around 900 km away from Rio de Janeiro, led us to question whether the epidemic caused by S. brasiliensis has spread from the epicenter in Rio de Janeiro, emerged independently in the two locations, or whether the disease has been present and unrecognized in Midwestern Brazil. A retrospective analysis of 91 human and 4 animal cases from Brasilia, ranging from 1993 to 2018, suggests the occurrence of both sapronotic and zoonotic transmission. Molecular typing identified S. schenckii as the agent in two animals and all seven human patients from which we were able to recover clinical isolates. However, in two animals, the disease was caused by S. brasiliensis. Whole-genome sequence typing of seven S. brasiliensis strains suggests that isolates from Brasilia are genetically distinct from those obtained at the epicenter of the outbreak in Rio de Janeiro, both in phylogenomic and population genomic analyses. The two S. brasiliensis populations seem to have separated 2.24 - 3.09 million years ago, indicating independent outbreaks or that the zoonotic S. brasiliensis outbreak might have started earlier and be spread wider in South America than previously recognized.

[1]  Christina A. Cuomo,et al.  Threats Posed by the Fungal Kingdom to Humans, Wildlife, and Agriculture , 2020, mBio.

[2]  I. D. Gremião,et al.  Geographic Expansion of Sporotrichosis, Brazil , 2020, Emerging infectious diseases.

[3]  D. R. Matute,et al.  Fungal species boundaries in the genomics era. , 2019, Fungal genetics and biology : FG & B.

[4]  L. B. G. Silva,et al.  Surto de esporotricose felina na região metropolitana do Recife , 2018, Pesquisa Veterinária Brasileira.

[5]  S. Córdoba,et al.  Molecular identification and susceptibility profile of Sporothrix schenckii sensu lato isolated in Argentina , 2018, Mycoses.

[6]  J. McEwen,et al.  Draft Genome Sequences of Two Sporothrix schenckii Clinical Isolates Associated with Human Sporotrichosis in Colombia , 2018, Genome Announcements.

[7]  R. Zancopé-Oliveira,et al.  Feline sporotrichosis: associations between clinical-epidemiological profiles and phenotypic-genotypic characteristics of the etiological agents in the Rio de Janeiro epizootic area , 2018, Memorias do Instituto Oswaldo Cruz.

[8]  Daniel L. Ayres,et al.  Bayesian phylogenetic and phylodynamic data integration using BEAST 1.10 , 2018, Virus evolution.

[9]  F. Queiroz-Telles,et al.  Neglected endemic mycoses. , 2017, The Lancet. Infectious diseases.

[10]  A. R. Bernardes-Engemann,et al.  Sporotrichosis: an update on epidemiology, etiopathogenesis, laboratory and clinical therapeutics , 2017, Anais brasileiros de dermatologia.

[11]  A. Nishikaku,et al.  Exploring virulence and immunogenicity in the emerging pathogen Sporothrix brasiliensis , 2017, PLoS neglected tropical diseases.

[12]  I. D. Gremião,et al.  Zoonotic Epidemic of Sporotrichosis: Cat to Human Transmission , 2017, PLoS pathogens.

[13]  R. Zancopé-Oliveira,et al.  Refractory sporotrichosis due to Sporothrix brasiliensis in humans appears to be unrelated to in vivo resistance , 2016, Medical mycology.

[14]  A. M. Rodrigues,et al.  Sporothrix Species Causing Outbreaks in Animals and Humans Driven by Animal–Animal Transmission , 2016, PLoS pathogens.

[15]  Juno Thomas,et al.  An Outbreak of Lymphocutaneous Sporotrichosis among Mine-Workers in South Africa , 2015, PLoS neglected tropical diseases.

[16]  A. T. Vasconcelos,et al.  Asexual Propagation of a Virulent Clone Complex in a Human and Feline Outbreak of Sporotrichosis , 2014, Eukaryotic Cell.

[17]  S. Tasker,et al.  Prevalence and phylogenetic analysis of haemoplasmas from cats infected with multiple species , 2014, Journal of microbiological methods.

[18]  A. von Haeseler,et al.  IQ-TREE: A Fast and Effective Stochastic Algorithm for Estimating Maximum-Likelihood Phylogenies , 2014, Molecular biology and evolution.

[19]  Rangel C. Souza,et al.  Comparative genomics of the major fungal agents of human and animal Sporotrichosis: Sporothrix schenckii and Sporothrix brasiliensis , 2014, BMC Genomics.

[20]  Q. Zeng,et al.  Genome Sequence of the Pathogenic Fungus Sporothrix schenckii (ATCC 58251) , 2014, Genome Announcements.

[21]  Björn Usadel,et al.  Trimmomatic: a flexible trimmer for Illumina sequence data , 2014, Bioinform..

[22]  Márcia Kikuyo Notomi,et al.  FELINO DOMÉSTICO COMO AGENTE TRANSMISSOR DE ESPOROTRICOSES PARA HUMANO - RELATO DO PRIMEIRO CASO NO ESTADO DE ALAGOAS , 2014 .

[23]  Leen Stougie,et al.  Ancient Dispersal of the Human Fungal Pathogen Cryptococcus gattii from the Amazon Rainforest , 2013, PloS one.

[24]  M. Felipe,et al.  Phylogenetic Analysis Reveals a High Prevalence of Sporothrix brasiliensis in Feline Sporotrichosis Outbreaks , 2013, PLoS neglected tropical diseases.

[25]  Minh Anh Nguyen,et al.  Ultrafast Approximation for Phylogenetic Bootstrap , 2013, Molecular biology and evolution.

[26]  P. Andolfatto,et al.  Revisiting an Old Riddle: What Determines Genetic Diversity Levels within Species? , 2012, PLoS biology.

[27]  M. DePristo,et al.  A framework for variation discovery and genotyping using next-generation DNA sequencing data , 2011, Nature Genetics.

[28]  M. DePristo,et al.  The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. , 2010, Genome research.

[29]  O. Gascuel,et al.  New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. , 2010, Systematic biology.

[30]  T. Stadler On incomplete sampling under birth-death models and connections to the sampling-based coalescent. , 2009, Journal of theoretical biology.

[31]  K. D. Filgueira ESPOROTRICOSE NA ESPÉCIE CANINA: RELATO DE UM CASO NA CIDADE DE MOSSORÓ-RN , 2009 .

[32]  J. Daggy,et al.  Prevalence and risk factors for hemoplasmas in domestic cats naturally infected with feline immunodeficiency virus and/or feline leukemia virus in Rio de Janeiro — Brazil* , 2008, Journal of feline medicine and surgery.

[33]  E. Mellado,et al.  Molecular epidemiology and antifungal susceptibility patterns of Sporothrix schenckii isolates from a cat-transmitted epidemic of sporotrichosis in Rio de Janeiro, Brazil. , 2008, Medical mycology.

[34]  J. Guarro,et al.  Sporothrix brasiliensis, S. globosa, and S. mexicana, Three New Sporothrix Species of Clinical Interest , 2007, Journal of Clinical Microbiology.

[35]  S. Salzberg,et al.  Versatile and open software for comparing large genomes , 2004, Genome Biology.

[36]  T. White,et al.  Estimation of nucleotide substitution rates in Eurotiomycete fungi. , 2002, Molecular biology and evolution.

[37]  A. Schuchat,et al.  A multistate outbreak of sporotrichosis associated with sphagnum moss. , 1992, American journal of epidemiology.

[38]  A. Chakrabarti,et al.  Global epidemiology of sporotrichosis. , 2015, Medical mycology.

[39]  T. Fernandes,et al.  Esporotricose felina no município de Itaporanga, estado da Paraíba, Brasil: relato de um caso , 2011 .

[40]  Claude-Alain H. Roten,et al.  Fast and accurate short read alignment with Burrows–Wheeler transform , 2009, Bioinform..