Key Success Factors and Future Perspective of Silicon-Based Solar Cells
暂无分享,去创建一个
Maurizio Acciarri | Simona Binetti | A. Le Donne | M. Morgano | Y. Jestin | A. L. Donne | S. Binetti | M. Acciarri | Y. Jestin | M. Morgano
[1] S. Basu,et al. Optimized luminescence properties of Mn doped ZnS nanoparticles for photovoltaic applications , 2013 .
[2] Formation and photoluminescence of Si quantum dots in SiO2/Si3N4 hybrid matrix for all-Si tandem solar cells , 2010 .
[3] Matthew D. Pickett,et al. Iron point defect reduction in multicrystalline silicon solar cells , 2008 .
[4] R. Kopecek,et al. Effect of compensation and of metallic impurities on the electrical properties of Cz-grown solar grade silicon , 2008 .
[5] B. Richards,et al. Enhancing the performance of solar cells via luminescent down-shifting of the incident spectrum: A review , 2009 .
[6] S. Pizzini,et al. Effect of oxygen aggregation processes on the recombining activity of 60° dislocations in Czochralski grown silicon , 1994 .
[7] Gavin Conibeer,et al. Silicon quantum dot/crystalline silicon solar cells , 2008, Nanotechnology.
[8] S. Binetti,et al. Nanostructured Silicon-Based Films for Photovoltaics: Recent Progresses and Perspectives , 2011 .
[9] Martin A. Green,et al. Solar cell efficiency tables (version 39) , 2012 .
[10] Chun-Ying Huang,et al. Efficient light harvesting by photon downconversion and light trapping in hybrid ZnS nanoparticles/Si nanotips solar cells. , 2010, ACS nano.
[11] A. Nozik. Quantum dot solar cells , 2002 .
[12] S. Pizzini,et al. Experimental evidence of dislocation related shallow states in p-type Si. , 2005, Physical review letters.
[13] Lorenzo Pavesi,et al. Light emitting devices based on nanocrystalline-silicon multilayer structure , 2009 .
[14] D. Hariskos,et al. New world record efficiency for Cu(In,Ga)Se2 thin‐film solar cells beyond 20% , 2011 .
[15] E. Simanek. The temperature dependence of the electrical resistivity of granular metals , 1981 .
[16] Xiaoyang Liu,et al. Optimized doping concentration of manganese in zinc sulfide nanoparticles for yellow-orange light emission , 2009 .
[17] K. Wambach,et al. Impact of Metal Contamination in Silicon Solar Cells , 2010 .
[18] L. Arnberg,et al. Temperature‐dependent Hall‐effect measurements of p‐type multicrystalline compensated solar grade silicon , 2013 .
[19] Jagjit Nanda,et al. Single-exciton optical gain in semiconductor nanocrystals , 2007, Nature.
[20] J. Garandet,et al. Electronic properties of highly-doped and compensated solar-grade silicon wafers and solar cells , 2011 .
[21] S. Binetti,et al. Rare earth organic complexes as down-shifters to improve Si-based solar cell efficiency , 2011 .
[22] T. Buonassisi,et al. Engineering metal precipitate size distributions to enhance gettering in multicrystalline silicon , 2012 .
[23] David B Mitzi,et al. High‐Efficiency Solar Cell with Earth‐Abundant Liquid‐Processed Absorber , 2010, Advanced materials.
[24] Tadashi Ito,et al. Enhanced Conversion Efficiencies of Cu2ZnSnS4-Based Thin Film Solar Cells by Using Preferential Etching Technique , 2008 .
[25] M. Kittler,et al. Influence of copper contamination on recombination activity of misfit dislocations in SiGe/Si epilayers: Temperature dependence of activity as a marker characterizing the contamination level , 1995 .