Development of a Neuroevolution Machine Learning Potential of Pd-Cu-Ni-P Alloys

[1]  Z. Fan,et al.  Anisotropic and high thermal conductivity in monolayer quasi-hexagonal fullerene: A comparative study against bulk phase fullerene , 2022, International Journal of Heat and Mass Transfer.

[2]  T. Ala‐Nissila,et al.  Quantum-corrected thickness-dependent thermal conductivity in amorphous silicon predicted by machine learning molecular dynamics simulations , 2022, Physical Review B.

[3]  Jian Sun,et al.  Pressure Stabilized Lithium-Aluminum Compounds with Both Superconducting and Superionic Behaviors. , 2022, Physical review letters.

[4]  Z. Fan,et al.  Atomistic insights into the mechanical anisotropy and fragility of monolayer fullerene networks using quantum mechanical calculations and machine-learning molecular dynamics simulations , 2022, Extreme Mechanics Letters.

[5]  N. Boudet,et al.  Relationship between atomic structure and excellent glass forming ability in Pd42.5Ni, 2022, Journal of Non-Crystalline Solids.

[6]  J. Qiao,et al.  Intrinsic Correlation between the Fraction of Liquidlike Zones and the β Relaxation in High-Entropy Metallic Glasses. , 2022, Physical review letters.

[7]  Richard A. Messerly,et al.  Extending machine learning beyond interatomic potentials for predicting molecular properties , 2022, Nature Reviews Chemistry.

[8]  H. Bai,et al.  Liquid-like atoms in dense-packed solid glasses , 2022, Nature Materials.

[9]  J. Schroers,et al.  Compositional dependence of the fragility in metallic glass forming liquids , 2022, Nature Communications.

[10]  T. Ala‐Nissila,et al.  GPUMD: A package for constructing accurate machine-learned potentials and performing highly efficient atomistic simulations. , 2022, The Journal of chemical physics.

[11]  Weihua Wang,et al.  Softening in an ultrasonic-vibrated Pd-based metallic glass , 2022, Intermetallics.

[12]  J. Luan,et al.  In situ study on medium-range order evolution during the polyamorphous phase transition in a Pd-Ni-P nanostructured glass , 2022, Journal of Materials Science & Technology.

[13]  Steven J. Plimpton,et al.  LAMMPS - A flexible simulation tool for particle-based materials modeling at the atomic, meso, and continuum scales , 2021, Computer Physics Communications.

[14]  Z. Fan Improving the accuracy of the neuroevolution machine learning potential for multi-component systems , 2021, Journal of physics. Condensed matter : an Institute of Physics journal.

[15]  T. Rabczuk,et al.  First‐Principles Multiscale Modeling of Mechanical Properties in Graphene/Borophene Heterostructures Empowered by Machine‐Learning Interatomic Potentials , 2021, Advanced materials.

[16]  T. Ala‐Nissila,et al.  Neuroevolution machine learning potentials: Combining high accuracy and low cost in atomistic simulations and application to heat transport , 2021, Physical Review B.

[17]  Qinghua Zhang,et al.  A medium-range structure motif linking amorphous and crystalline states , 2021, Nature Materials.

[18]  J. Behler Four Generations of High-Dimensional Neural Network Potentials. , 2021, Chemical reviews.

[19]  Y. Mishin Machine-Learning Interatomic Potentials for Materials Science , 2021, SSRN Electronic Journal.

[20]  W. E,et al.  Phase Diagram of a Deep Potential Water Model. , 2021, Physical review letters.

[21]  Michael Gastegger,et al.  Machine Learning Force Fields , 2020, Chemical reviews.

[22]  Volker L. Deringer,et al.  A general-purpose machine-learning force field for bulk and nanostructured phosphorus , 2020, Nature Communications.

[23]  Hong Wu,et al.  Microstructure evolution and deformation mechanism of amorphous/crystalline high-entropy-alloy composites , 2020 .

[24]  K. Yin,et al.  Generality of abnormal viscosity drop on cooling of CuZr alloy melts and its structural origin , 2020, Acta Materialia.

[25]  Chi Chen,et al.  Complex strengthening mechanisms in the NbMoTaW multi-principal element alloy , 2019, npj Computational Materials.

[26]  J. Behler,et al.  A Performance and Cost Assessment of Machine Learning Interatomic Potentials. , 2019, The journal of physical chemistry. A.

[27]  N. Boudet,et al.  Partial structure investigation of the traditional bulk metallic glass Pd40Ni40P20 , 2019, Physical Review B.

[28]  Jian Luo,et al.  Quantum-accurate spectral neighbor analysis potential models for Ni-Mo binary alloys and fcc metals , 2018, Physical Review B.

[29]  B. Liu,et al.  Transformation induced softening and plasticity in high entropy alloys , 2018 .

[30]  E Weinan,et al.  Deep Potential Molecular Dynamics: a scalable model with the accuracy of quantum mechanics , 2017, Physical review letters.

[31]  W. Z. Zhou,et al.  Direct imaging of a first-order liquid-liquid phase transition in undercooled molten PdNiP alloys and its thermodynamic implications , 2017 .

[32]  Haipeng Wang,et al.  Thermophysical Properties and Atomic Distribution of Undercooled Liquid Cu , 2017 .

[33]  Chang-yu Zhou,et al.  Orientation and strain rate dependent tensile behavior of single crystal titanium nanowires by molecular dynamics simulations , 2017 .

[34]  Volker L. Deringer,et al.  Machine learning based interatomic potential for amorphous carbon , 2016, 1611.03277.

[35]  Wei Chen,et al.  Efficient molecular dynamics simulations with many-body potentials on graphics processing units , 2016, Comput. Phys. Commun..

[36]  K. Dong,et al.  A comparative study on local atomic configurations characterized by cluster-type-index method and Voronoi polyhedron method , 2016 .

[37]  A. Inoue,et al.  The world's biggest glassy alloy ever made , 2012 .

[38]  S. Lan,et al.  A metastable liquid state miscibility gap in undercooled Pd–Ni–P melts , 2012 .

[39]  T. Wada,et al.  Microstructure and Electrochemical Behavior of Pd­Cu­Ni­P Bulk Metallic Glass and Its Crystallized Alloys , 2012 .

[40]  A. Hirata,et al.  Structural origins of the excellent glass forming ability of Pd40Ni40P20. , 2012, Physical review letters.

[41]  Tom Schaul,et al.  Natural Evolution Strategies , 2008, 2008 IEEE Congress on Evolutionary Computation (IEEE World Congress on Computational Intelligence).

[42]  F. Faupel,et al.  Diffusion in bulk-metallic glass-forming Pd–Cu–Ni–P alloys: From the glass to the equilibrium melt , 2007 .

[43]  O. Haruyama Thermodynamic approach to free volume kinetics during isothermal relaxation in bulk Pd–Cu–Ni–P20 glasses , 2007 .

[44]  Michele Parrinello,et al.  Generalized neural-network representation of high-dimensional potential-energy surfaces. , 2007, Physical review letters.

[45]  J. Bai,et al.  Atomic packing and short-to-medium-range order in metallic glasses , 2006, Nature.

[46]  F. Faupel,et al.  Diffusion and isotope effect in bulk-metallic glass-forming Pd–Cu–Ni–P alloys from the glass to the equilibrium melt , 2003 .

[47]  M. Baskes,et al.  Semiempirical atomic potentials for the fcc metals Cu, Ag, Au, Ni, Pd, Pt, Al, and Pb based on first and second nearest-neighbor modified embedded atom method , 2003 .

[48]  A. Inoue,et al.  Deformation and Fracture Behaviors of Pd-Cu-Ni-P Glassy Alloys , 2002 .

[49]  A. Meyer Atomic transport in dense multicomponent metallic liquids , 2002, cond-mat/0206364.

[50]  A. Inoue,et al.  Abrupt change in heat capacity of supercooled Pd–Cu–Ni–P melt during continuous cooling , 2001 .

[51]  A. Inoue,et al.  Undercooled liquid-to-glass transition during continuous cooling in Pd–Cu–Ni–P alloys , 2000 .

[52]  Nobuyuki Nishiyama,et al.  Structural Study of Pd-Based Amorphous Alloys with Wide Supercooled Liquid Region by Anomalous X-ray Scattering , 1999 .

[53]  A. Inoue,et al.  Preparation and thermal stability of bulk amorphous Pd40Cu30Ni10P20 alloy cylinder of 72 mm in diameter , 1997 .

[54]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[55]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[56]  Blöchl,et al.  Projector augmented-wave method. , 1994, Physical review. B, Condensed matter.

[57]  Hafner,et al.  Ab initio molecular dynamics for liquid metals. , 1995, Physical review. B, Condensed matter.

[58]  M. Baskes,et al.  Embedded-atom method: Derivation and application to impurities, surfaces, and other defects in metals , 1984 .

[59]  J. L. Finney,et al.  Random packings and the structure of simple liquids. I. The geometry of random close packing , 1970, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[60]  F. Birch Finite Elastic Strain of Cubic Crystals , 1947 .

[61]  Georges Voronoi Nouvelles applications des paramètres continus à la théorie des formes quadratiques. Deuxième mémoire. Recherches sur les parallélloèdres primitifs. , 1908 .