The entropy of scale-space

Viewing images as distributions of light quanta enables an information theoretic study of image structures on different scales. This article combines Shannon’s entropy and Witkin and Koenderink’s Scale-Space to establish a precise connection between the Heat Equation and the Thermodynamic Entropy in Scale-Space. Experimentally the entropy function is used to study global textures.

[1]  Jorma Rissanen,et al.  Stochastic Complexity in Statistical Inquiry , 1989, World Scientific Series in Computer Science.

[2]  Edwin T. Jaynes,et al.  Prior Probabilities , 1968, Encyclopedia of Machine Learning.

[3]  Martin Jägersand,et al.  Saliency Maps and Attention Selection in Scale and Spatial Coordinates: An Information Theoretic Approach , 1995, ICCV.

[4]  M. Muir Physical Chemistry , 1888, Nature.

[5]  Andrew P. Witkin,et al.  Scale-Space Filtering , 1983, IJCAI.

[6]  L. Beda Thermal physics , 1994 .

[7]  Bart M. ter Haar Romeny,et al.  Geometry-Driven Diffusion in Computer Vision , 1994, Computational Imaging and Vision.

[8]  Tony Lindeberg,et al.  Scale-Space Theory in Computer Vision , 1993, Lecture Notes in Computer Science.

[9]  Ming Li,et al.  An Introduction to Kolmogorov Complexity and Its Applications , 1997, Texts in Computer Science.