Foundations of Multivariate Functional Approximation for Scientific Data

The size and complexity of scientific data are rapidly outpacing our ability to manage, analyze, visualize, and draw conclusions from the results. One way to streamline scientific data processing is to transform the data model to one that is not only more efficient but that facilitates analytical reasoning. To this end, we are investigating modeling discrete scientific data by a functional basis representation based on a tensor product of nonuniform rational B-spline functions (NURBS). The functional model is an approximation that is more efficient to communicate, store, and analyze than the original form, while having geometric and analytic properties making it useful for further analysis without translating back to the discrete form. This paper presents four main contributions. The first is modeling in high dimensions, not just curves or surfaces but volumes and hyper-volumes. The second is an adaptive algorithm that adds knots and control points until the maximum error is below a threshold set by the user. The adaptive algorithm also works in high dimensions. The third is precise evaluation of values and high-order derivatives anywhere in the domain, again in high-dimensional space. The fourth contribution is parallelization on high-performance supercomputers. We evaluate our model using both synthetic and actual scientific datasets.

[1]  Peter Lindstrom,et al.  Fixed-Rate Compressed Floating-Point Arrays , 2014, IEEE Transactions on Visualization and Computer Graphics.

[2]  David R. Forsey,et al.  Hierarchical B-spline refinement , 1988, SIGGRAPH.

[3]  Peter Lindstrom,et al.  Assessing the effects of data compression in simulations using physically motivated metrics , 2013, SC.

[4]  Chuck Pheatt,et al.  Intel® threading building blocks , 2008 .

[5]  C. R. Deboor,et al.  A practical guide to splines , 1978 .

[6]  Tamara G. Kolda,et al.  Parallel Tensor Compression for Large-Scale Scientific Data , 2015, 2016 IEEE International Parallel and Distributed Processing Symposium (IPDPS).

[7]  Sangkun Park,et al.  High-dimensional trivariate nurbs representation for analyzing and visualizing fluid flow data , 1997, Comput. Graph..

[8]  Jarek Rossignac,et al.  Out‐of‐core compression and decompression of large n‐dimensional scalar fields , 2003, Comput. Graph. Forum.

[9]  M. Cox The Numerical Evaluation of B-Splines , 1972 .

[10]  David H. Eberly,et al.  Ridges in Image and Data Analysis , 1996, Computational Imaging and Vision.

[11]  Victor M. Calo,et al.  PetIGA: A Framework for High-Performance Isogeometric Analysis , 2013 .

[12]  John A. Evans,et al.  Isogeometric analysis using T-splines , 2010 .

[13]  Hongwei Lin,et al.  Survey on geometric iterative methods and their applications , 2018, Comput. Aided Des..

[14]  Les A. Piegl,et al.  The NURBS Book , 1995, Monographs in Visual Communication.

[15]  Martin Isenburg,et al.  Fast and Efficient Compression of Floating-Point Data , 2006, IEEE Transactions on Visualization and Computer Graphics.

[16]  T. Hughes,et al.  Isogeometric analysis : CAD, finite elements, NURBS, exact geometry and mesh refinement , 2005 .

[17]  William Gropp,et al.  Efficient Management of Parallelism in Object-Oriented Numerical Software Libraries , 1997, SciTools.

[18]  Robert B. Ross,et al.  A Study of Parallel Particle Tracing for Steady-State and Time-Varying Flow Fields , 2011, 2011 IEEE International Parallel & Distributed Processing Symposium.

[19]  Carl de Boor,et al.  A Practical Guide to Splines , 1978, Applied Mathematical Sciences.

[20]  J. Navarro-Pedreño Numerical Methods for Least Squares Problems , 1996 .

[21]  Elaine Cohen,et al.  Volumetric parameterization and trivariate B-spline fitting using harmonic functions , 2009, Comput. Aided Geom. Des..

[22]  Ray W. Grout,et al.  Direct numerical simulation of flame stabilization downstream of a transverse fuel jet in cross-flow , 2011 .

[23]  Patrick Oonincx,et al.  Second generation wavelets and applications , 2005 .

[24]  A. Roshko,et al.  Vortical structure in the wake of a transverse jet , 1994, Journal of Fluid Mechanics.

[25]  P. Cochat,et al.  Et al , 2008, Archives de pediatrie : organe officiel de la Societe francaise de pediatrie.

[26]  Robert Latham,et al.  Compressing the Incompressible with ISABELA: In-situ Reduction of Spatio-temporal Data , 2011, Euro-Par.

[27]  Jacqueline Chen,et al.  Terascale direct numerical simulations of turbulent combustion , 2006, SC.

[28]  Christopher Heil,et al.  Continuous and Discrete Wavelet Transforms , 1989, SIAM Rev..

[29]  Boualem Boashash,et al.  Time-Frequency Signal Analysis and Processing: A Comprehensive Reference , 2015 .

[30]  Robert B. Ross,et al.  Scalable parallel building blocks for custom data analysis , 2011, 2011 IEEE Symposium on Large Data Analysis and Visualization.

[31]  Han-Wei Shen,et al.  Uncertainty modeling and error reduction for pathline computation in time-varying flow fields , 2015, 2015 IEEE Pacific Visualization Symposium (PacificVis).

[32]  Elaine Cohen,et al.  Representation and extraction of volumetric attributes using trivariate splines: a mathematical framework , 2001, SMA '01.

[33]  Ahmad H. Nasri,et al.  T-splines and T-NURCCs , 2003, ACM Trans. Graph..

[34]  Gershon Elber,et al.  Interactive Direct Rendering of Trivariate B-Spline Scalar Functions , 2001, IEEE Trans. Vis. Comput. Graph..

[35]  C. D. Boor,et al.  On Calculating B-splines , 1972 .

[36]  Z. Q. John Lu,et al.  Nonparametric Functional Data Analysis: Theory And Practice , 2007, Technometrics.

[37]  Richard H. Crawford,et al.  N -Dimensional Nonuniform Rational B-Splines for Metamodeling , 2009, J. Comput. Inf. Sci. Eng..

[38]  P. Fischer,et al.  On the numerical simulation of thermal striping in the upper plenum of a fast reactor , 2010 .

[39]  Hong Qin,et al.  Multiresolution heterogeneous solid modeling and visualization using trivariate simplex splines , 2004, SM '04.

[40]  P. Fischer,et al.  High-Order Methods for Incompressible Fluid Flow , 2002 .

[41]  Les A. Piegl,et al.  Parametrization for surface fitting in reverse engineering , 2001, Comput. Aided Des..

[42]  Václav Skala,et al.  Radial Basis Function Approximations: Comparison and Applications , 2017, ArXiv.

[43]  Spencer Graves,et al.  Functional Data Analysis with R and MATLAB , 2009 .

[44]  P. Lancaster Curve and surface fitting , 1986 .

[45]  T. Auton Applied Functional Data Analysis: Methods and Case Studies , 2004 .

[46]  Franck Cappello,et al.  Fast Error-Bounded Lossy HPC Data Compression with SZ , 2016, 2016 IEEE International Parallel and Distributed Processing Symposium (IPDPS).