Foundations of Multivariate Functional Approximation for Scientific Data
暂无分享,去创建一个
Iulian Grindeanu | Xavier Tricoche | Youssef S. G. Nashed | Tom Peterka | Vijay S. Mahadevan | Raine Yeh | T. Peterka | X. Tricoche | V. Mahadevan | Y. Nashed | I. Grindeanu | Raine Yeh
[1] Peter Lindstrom,et al. Fixed-Rate Compressed Floating-Point Arrays , 2014, IEEE Transactions on Visualization and Computer Graphics.
[2] David R. Forsey,et al. Hierarchical B-spline refinement , 1988, SIGGRAPH.
[3] Peter Lindstrom,et al. Assessing the effects of data compression in simulations using physically motivated metrics , 2013, SC.
[4] Chuck Pheatt,et al. Intel® threading building blocks , 2008 .
[5] C. R. Deboor,et al. A practical guide to splines , 1978 .
[6] Tamara G. Kolda,et al. Parallel Tensor Compression for Large-Scale Scientific Data , 2015, 2016 IEEE International Parallel and Distributed Processing Symposium (IPDPS).
[7] Sangkun Park,et al. High-dimensional trivariate nurbs representation for analyzing and visualizing fluid flow data , 1997, Comput. Graph..
[8] Jarek Rossignac,et al. Out‐of‐core compression and decompression of large n‐dimensional scalar fields , 2003, Comput. Graph. Forum.
[9] M. Cox. The Numerical Evaluation of B-Splines , 1972 .
[10] David H. Eberly,et al. Ridges in Image and Data Analysis , 1996, Computational Imaging and Vision.
[11] Victor M. Calo,et al. PetIGA: A Framework for High-Performance Isogeometric Analysis , 2013 .
[12] John A. Evans,et al. Isogeometric analysis using T-splines , 2010 .
[13] Hongwei Lin,et al. Survey on geometric iterative methods and their applications , 2018, Comput. Aided Des..
[14] Les A. Piegl,et al. The NURBS Book , 1995, Monographs in Visual Communication.
[15] Martin Isenburg,et al. Fast and Efficient Compression of Floating-Point Data , 2006, IEEE Transactions on Visualization and Computer Graphics.
[16] T. Hughes,et al. Isogeometric analysis : CAD, finite elements, NURBS, exact geometry and mesh refinement , 2005 .
[17] William Gropp,et al. Efficient Management of Parallelism in Object-Oriented Numerical Software Libraries , 1997, SciTools.
[18] Robert B. Ross,et al. A Study of Parallel Particle Tracing for Steady-State and Time-Varying Flow Fields , 2011, 2011 IEEE International Parallel & Distributed Processing Symposium.
[19] Carl de Boor,et al. A Practical Guide to Splines , 1978, Applied Mathematical Sciences.
[20] J. Navarro-Pedreño. Numerical Methods for Least Squares Problems , 1996 .
[21] Elaine Cohen,et al. Volumetric parameterization and trivariate B-spline fitting using harmonic functions , 2009, Comput. Aided Geom. Des..
[22] Ray W. Grout,et al. Direct numerical simulation of flame stabilization downstream of a transverse fuel jet in cross-flow , 2011 .
[23] Patrick Oonincx,et al. Second generation wavelets and applications , 2005 .
[24] A. Roshko,et al. Vortical structure in the wake of a transverse jet , 1994, Journal of Fluid Mechanics.
[25] P. Cochat,et al. Et al , 2008, Archives de pediatrie : organe officiel de la Societe francaise de pediatrie.
[26] Robert Latham,et al. Compressing the Incompressible with ISABELA: In-situ Reduction of Spatio-temporal Data , 2011, Euro-Par.
[27] Jacqueline Chen,et al. Terascale direct numerical simulations of turbulent combustion , 2006, SC.
[28] Christopher Heil,et al. Continuous and Discrete Wavelet Transforms , 1989, SIAM Rev..
[29] Boualem Boashash,et al. Time-Frequency Signal Analysis and Processing: A Comprehensive Reference , 2015 .
[30] Robert B. Ross,et al. Scalable parallel building blocks for custom data analysis , 2011, 2011 IEEE Symposium on Large Data Analysis and Visualization.
[31] Han-Wei Shen,et al. Uncertainty modeling and error reduction for pathline computation in time-varying flow fields , 2015, 2015 IEEE Pacific Visualization Symposium (PacificVis).
[32] Elaine Cohen,et al. Representation and extraction of volumetric attributes using trivariate splines: a mathematical framework , 2001, SMA '01.
[33] Ahmad H. Nasri,et al. T-splines and T-NURCCs , 2003, ACM Trans. Graph..
[34] Gershon Elber,et al. Interactive Direct Rendering of Trivariate B-Spline Scalar Functions , 2001, IEEE Trans. Vis. Comput. Graph..
[35] C. D. Boor,et al. On Calculating B-splines , 1972 .
[36] Z. Q. John Lu,et al. Nonparametric Functional Data Analysis: Theory And Practice , 2007, Technometrics.
[37] Richard H. Crawford,et al. N -Dimensional Nonuniform Rational B-Splines for Metamodeling , 2009, J. Comput. Inf. Sci. Eng..
[38] P. Fischer,et al. On the numerical simulation of thermal striping in the upper plenum of a fast reactor , 2010 .
[39] Hong Qin,et al. Multiresolution heterogeneous solid modeling and visualization using trivariate simplex splines , 2004, SM '04.
[40] P. Fischer,et al. High-Order Methods for Incompressible Fluid Flow , 2002 .
[41] Les A. Piegl,et al. Parametrization for surface fitting in reverse engineering , 2001, Comput. Aided Des..
[42] Václav Skala,et al. Radial Basis Function Approximations: Comparison and Applications , 2017, ArXiv.
[43] Spencer Graves,et al. Functional Data Analysis with R and MATLAB , 2009 .
[44] P. Lancaster. Curve and surface fitting , 1986 .
[45] T. Auton. Applied Functional Data Analysis: Methods and Case Studies , 2004 .
[46] Franck Cappello,et al. Fast Error-Bounded Lossy HPC Data Compression with SZ , 2016, 2016 IEEE International Parallel and Distributed Processing Symposium (IPDPS).