Fault-tolerant resource estimate for quantum chemical simulations: Case study on Li-ion battery electrolyte molecules

We estimate the resources required in the fusion-based quantum computing scheme to simulate electrolyte molecules in Li-ion batteries on a fault-tolerant, photonic quantum computer. We focus on the molecules that can provide practical solutions to industrially relevant problems. Certain fault-tolerant operations require the use of single-qubit"magic states"prepared by dedicated"magic state factories"(MSFs). Producing and consuming magic states in parallel is typically a prohibitively expensive task, resulting in the serial application of fault-tolerant gates. However, for the systems considered, the MSF constitutes a negligible fraction of the total footprint of the quantum computer, allowing for the use of multiple MSFs to produce magic states in parallel. We suggest architectural and algorithmic techniques that can accommodate such a capability. We propose a method to consume multiple magic states simultaneously, which can potentially lead to an order of magnitude reduction in the computational runtime without additional expense in the footprint.

[1]  Naomi H. Nickerson,et al.  Fusion-based quantum computation , 2021, Nature Communications.

[2]  Connor T. Hann,et al.  Building a Fault-Tolerant Quantum Computer Using Concatenated Cat Codes , 2020, PRX Quantum.

[3]  Isaac H. Kim,et al.  Interleaving: Modular architectures for fault-tolerant photonic quantum computing , 2021, 2103.08612.

[4]  Earl T Campbell,et al.  Early fault-tolerant simulations of the Hubbard model , 2020, Quantum Science and Technology.

[5]  Joonho Lee,et al.  Even More Efficient Quantum Computations of Chemistry Through Tensor Hypercontraction , 2020, PRX Quantum.

[6]  Damian S. Steiger,et al.  Quantum computing enhanced computational catalysis , 2020, Physical Review Research.

[7]  Kianna Wan,et al.  Exponentially faster implementations of Select(H) for fermionic Hamiltonians , 2020, Quantum.

[8]  Tanvi P. Gujarati,et al.  Quantum computation of dominant products in lithium-sulfur batteries. , 2020, The Journal of chemical physics.

[9]  Craig Gidney,et al.  How to factor 2048 bit RSA integers in 8 hours using 20 million noisy qubits , 2019, Quantum.

[10]  Nicolas Delfosse,et al.  Almost-linear time decoding algorithm for topological codes , 2017, Quantum.

[11]  Craig Gidney,et al.  Quantum block lookahead adders and the wait for magic states. , 2020, 2012.01624.

[12]  J. Barreto,et al.  An integrated optical modulator operating at cryogenic temperatures , 2020, Nature Materials.

[13]  Tanvi P. Gujarati,et al.  A Heuristic Quantum-Classical Algorithm for Modeling Substitutionally Disordered Binary Crystalline Materials , 2020, 2004.00957.

[14]  Howard M. Wiseman,et al.  π-Corrected Heisenberg Limit. , 2019, Physical review letters.

[15]  C. Monroe,et al.  Quantum approximate optimization of the long-range Ising model with a trapped-ion quantum simulator , 2019, Proceedings of the National Academy of Sciences.

[16]  Ryan Babbush,et al.  Increasing the Representation Accuracy of Quantum Simulations of Chemistry without Extra Quantum Resources , 2019, Physical Review X.

[17]  Hartmut Neven,et al.  Improved Fault-Tolerant Quantum Simulation of Condensed-Phase Correlated Electrons via Trotterization , 2019, Quantum.

[18]  Benjamin J. Brown,et al.  Universal fault-tolerant measurement-based quantum computation , 2018, Physical Review Research.

[19]  Alán Aspuru-Guzik,et al.  Quantum computational chemistry , 2018, Reviews of Modern Physics.

[20]  Tetsuya Hayashi,et al.  Advances in low-loss, large-area, and multicore fibers , 2020 .

[21]  Optical Fiber Telecommunications VII , 2020 .

[22]  J. Dahn,et al.  Long cycle life and dendrite-free lithium morphology in anode-free lithium pouch cells enabled by a dual-salt liquid electrolyte , 2019, Nature Energy.

[23]  J. Dahn,et al.  Long cycle life and dendrite-free lithium morphology in anode-free lithium pouch cells enabled by a dual-salt liquid electrolyte , 2019, Nature Energy.

[24]  Daniel Litinski,et al.  Magic State Distillation: Not as Costly as You Think , 2019, Quantum.

[25]  Ryan Babbush,et al.  Qubitization of Arbitrary Basis Quantum Chemistry Leveraging Sparsity and Low Rank Factorization , 2019, Quantum.

[26]  Anthony Laing,et al.  Generation and sampling of quantum states of light in a silicon chip , 2018, Nature Physics.

[27]  Austin G. Fowler,et al.  Efficient magic state factories with a catalyzed|CCZ⟩to2|T⟩transformation , 2018, Quantum.

[28]  G. Chan,et al.  The electronic complexity of the ground-state of the FeMo cofactor of nitrogenase as relevant to quantum simulations. , 2018, The Journal of chemical physics.

[29]  Daniel Litinski,et al.  A Game of Surface Codes: Large-Scale Quantum Computing with Lattice Surgery , 2018, Quantum.

[30]  I. Chuang,et al.  Hamiltonian Simulation by Qubitization , 2016, Quantum.

[31]  Luke Schaeffer,et al.  Trading T-gates for dirty qubits in state preparation and unitary synthesis , 2018, 1812.00954.

[32]  P. Winzer,et al.  Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages , 2018, Nature.

[33]  Daniel S. Levine,et al.  Postponing the orthogonality catastrophe: efficient state preparation for electronic structure simulations on quantum devices , 2018, 1809.05523.

[34]  Alexandru Paler,et al.  Encoding Electronic Spectra in Quantum Circuits with Linear T Complexity , 2018, Physical Review X.

[35]  Hong Li,et al.  Review on modeling of the anode solid electrolyte interphase (SEI) for lithium-ion batteries , 2018, npj Computational Materials.

[36]  Jeongwan Haah,et al.  Codes and Protocols for Distilling T, controlled-S, and Toffoli Gates , 2017, Quantum.

[37]  David Poulin,et al.  Magic state distillation at intermediate size , 2017, Quantum Inf. Comput..

[38]  Sandeep Sharma,et al.  PySCF: the Python‐based simulations of chemistry framework , 2018 .

[39]  Jeongwan Haah,et al.  Magic state distillation with low space overhead and optimal asymptotic input count , 2017, 1703.07847.

[40]  Myung-Hyun Ryou,et al.  Fluorinated Carbonate-Based Electrolyte for High-Voltage Li(Ni0.5Mn0.3Co0.2)O2/Graphite Lithium-Ion Battery , 2017 .

[41]  Earl T. Campbell,et al.  Unified framework for magic state distillation and multiqubit gate synthesis with reduced resource cost , 2016, 1606.01904.

[42]  M. Troyer,et al.  Elucidating reaction mechanisms on quantum computers , 2016, Proceedings of the National Academy of Sciences.

[43]  Gerbrand Ceder,et al.  Computational understanding of Li-ion batteries , 2016 .

[44]  Jonathan E. Moussa,et al.  Transversal Clifford gates on folded surface codes , 2016, 1603.02286.

[45]  Robin Blume-Kohout,et al.  The Promise of Quantum Simulation. , 2015, ACS nano.

[46]  Fernando Pastawski,et al.  Unfolding the color code , 2015, 1503.02065.

[47]  Ying Li,et al.  A magic state’s fidelity can be superior to the operations that created it , 2014, New Journal of Physics.

[48]  David Poulin,et al.  The Trotter step size required for accurate quantum simulation of quantum chemistry , 2014, Quantum Inf. Comput..

[49]  Paweł Mazurek,et al.  Simple scheme for encoding and decoding a qubit in unknown state for various topological codes , 2014, Scientific Reports.

[50]  Markus Reiher,et al.  New Benchmark Set of Transition-Metal Coordination Reactions for the Assessment of Density Functionals. , 2014, Journal of chemical theory and computation.

[51]  Cody Jones,et al.  Low-overhead constructions for the fault-tolerant Toffoli gate , 2012, 1212.5069.

[52]  Austin G. Fowler,et al.  Time-optimal quantum computation , 2012, 1210.4626.

[53]  Peter Selinger,et al.  Quantum circuits of T-depth one , 2012, ArXiv.

[54]  S. Bravyi,et al.  Magic-state distillation with low overhead , 2012, 1209.2426.

[55]  M. Mariantoni,et al.  Surface codes: Towards practical large-scale quantum computation , 2012, 1208.0928.

[56]  Nathan Wiebe,et al.  Hamiltonian simulation using linear combinations of unitary operations , 2012, Quantum Inf. Comput..

[57]  Nathan J DeYonker,et al.  Toward accurate theoretical thermochemistry of first row transition metal complexes. , 2012, The journal of physical chemistry. A.

[58]  Austin G. Fowler,et al.  Surface code quantum computing by lattice surgery , 2011, 1111.4022.

[59]  J. Goodenough,et al.  Challenges for Rechargeable Li Batteries , 2010 .

[60]  Vladimir Kolmogorov,et al.  Blossom V: a new implementation of a minimum cost perfect matching algorithm , 2009, Math. Program. Comput..

[61]  R. Raussendorf,et al.  Topological fault-tolerance in cluster state quantum computation , 2007, quant-ph/0703143.

[62]  Shengbo Zhang A review on electrolyte additives for lithium-ion batteries , 2006 .

[63]  R. Raussendorf,et al.  A fault-tolerant one-way quantum computer , 2005, quant-ph/0510135.

[64]  Thomas G. Draper,et al.  A logarithmic-depth quantum carry-lookahead adder , 2004, Quantum Inf. Comput..

[65]  T. Rudolph,et al.  Resource-efficient linear optical quantum computation. , 2004, Physical review letters.

[66]  A. Kitaev,et al.  Universal quantum computation with ideal Clifford gates and noisy ancillas (14 pages) , 2004, quant-ph/0403025.

[67]  Kang Xu,et al.  Nonaqueous liquid electrolytes for lithium-based rechargeable batteries. , 2004, Chemical reviews.

[68]  Scott Aaronson,et al.  Improved Simulation of Stabilizer Circuits , 2004, ArXiv.

[69]  H. Briegel,et al.  Measurement-based quantum computation on cluster states , 2003, quant-ph/0301052.

[70]  A. Kitaev,et al.  Fault tolerant quantum computation by anyons , 1997, quant-ph/9707021.

[71]  Lov K. Grover,et al.  Creating superpositions that correspond to efficiently integrable probability distributions , 2002, quant-ph/0208112.

[72]  J. Preskill,et al.  Topological quantum memory , 2001, quant-ph/0110143.

[73]  John A. Pople,et al.  Nobel Lecture: Quantum chemical models , 1999 .

[74]  Walter Kohn,et al.  Nobel Lecture: Electronic structure of matter-wave functions and density functionals , 1999 .

[75]  Peter W. Shor,et al.  Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer , 1995, SIAM Rev..

[76]  A. Kitaev,et al.  Quantum codes on a lattice with boundary , 1998, quant-ph/9811052.

[77]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[78]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[79]  Seth Lloyd,et al.  Universal Quantum Simulators , 1996, Science.

[80]  G. Kresse,et al.  Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set , 1996 .

[81]  Peter W. Shor,et al.  Algorithms for quantum computation: discrete logarithms and factoring , 1994, Proceedings 35th Annual Symposium on Foundations of Computer Science.

[82]  Hafner,et al.  Ab initio molecular-dynamics simulation of the liquid-metal-amorphous-semiconductor transition in germanium. , 1994, Physical review. B, Condensed matter.

[83]  Hafner,et al.  Ab initio molecular dynamics for liquid metals. , 1995, Physical review. B, Condensed matter.

[84]  R. Feynman Simulating physics with computers , 1999 .

[85]  E. Ball,et al.  Proceedings of the NATIONAL ACADEMY OF SCIENCES , 2022 .