Universal limitations on quantum key distribution over a network

The possibility to achieve secure communication among trusted parties by means of the quantum entanglement is intriguing both from a fundamental and an application purpose. In this work, we show that any state (after distillation) from which a quantum secret key can be obtained by local measurements has to be genuinely multipartite entangled. We introduce the most general form of memoryless network quantum channel: quantum multiplex channels. We define and determine asymptotic and non-asymptotic LOCC assisted conference key agreement capacities for quantum multiplex channels and provide various strong and weak converse bounds in terms of the divergence based entanglement measures of the quantum multiplex channels. The structure of our protocol manifested by an adaptive strategy of secret key and entanglement (GHZ state) distillation over an arbitrary multiplex quantum channel is generic. In particular, it provides a universal framework to study the performance of quantum key repeaters and - for the first time - of the MDI-QKD setups of channels. For teleportation-covariant multiplex quantum channels, which are channels with certain symmetries, we get upper bounds on the secret key agreement capacities in terms of the entanglement measures of their Choi states. For some network prototypes of practical relevance, we evaluate upper bounds on the conference key agreement capacities and MDI-QKD capacities. Upper bounds on the LOCC-assisted conference key agreement rates are also upper bounds on the distillation rates of GHZ states, a class of genuinely entangled pure states. We also obtain bounds on the rates at which conference key and GHZ states can be distilled from a finite number of copies of an arbitrary multipartite quantum state. Using our bounds, in particular cases, we are able to determine the capacities for quantum key distribution channels and rates of GHZ-state distillation.

[1]  Michal Horodecki,et al.  Low-dimensional quite noisy bound entanglement with a cryptographic key , 2010, 1008.1226.

[2]  Yao Fu,et al.  Long-distance measurement-device-independent multiparty quantum communication. , 2014, Physical review letters.

[3]  H. Briegel,et al.  Quantum simulation of interacting high-dimensional systems: The influence of noise , 2007, 0706.0154.

[4]  T. Beth,et al.  Codes for the quantum erasure channel , 1996, quant-ph/9610042.

[5]  Siddhartha Das,et al.  Bipartite Quantum Interactions: Entangling and Information Processing Abilities , 2019, ArXiv.

[6]  A. Zeilinger,et al.  Going Beyond Bell’s Theorem , 2007, 0712.0921.

[7]  Holger Boche,et al.  Extending Quantum Links: Modules for Fiber‐ and Memory‐Based Quantum Repeaters , 2019, Advanced Quantum Technologies.

[8]  H. L. Le Roy,et al.  Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability; Vol. IV , 1969 .

[9]  Masanao Ozawa,et al.  Soundness and completeness of quantum root-mean-square errors , 2018, npj Quantum Information.

[10]  Tomohiro Ogawa,et al.  Strong converse and Stein's lemma in quantum hypothesis testing , 2000, IEEE Trans. Inf. Theory.

[11]  Isaac L. Chuang,et al.  Demonstrating the viability of universal quantum computation using teleportation and single-qubit operations , 1999, Nature.

[12]  David P. DiVincenzo,et al.  Quantum information and computation , 2000, Nature.

[13]  Wei Chen,et al.  Practical issues of twin-field quantum key distribution , 2019, New Journal of Physics.

[14]  Kai Chen,et al.  Field test of a practical secure communication network with decoy-state quantum cryptography. , 2008, Optics express.

[15]  Jian-Wei Pan,et al.  An integrated space-to-ground quantum communication network over 4,600 kilometres , 2021, Nature.

[16]  Wolfgang Dür,et al.  Quantum Repeaters: The Role of Imperfect Local Operations in Quantum Communication , 1998 .

[17]  Salman Beigi,et al.  Sandwiched Rényi divergence satisfies data processing inequality , 2013, 1306.5920.

[18]  Elliott H. Lieb,et al.  Monotonicity of a relative Rényi entropy , 2013, ArXiv.

[19]  Rong Wang,et al.  Twin-Field Quantum Key Distribution without Phase Postselection , 2018, Physical Review Applied.

[20]  Stefan Bäuml,et al.  Limitations on quantum key repeaters , 2014, Nature Communications.

[21]  Claude E. Shannon,et al.  Two-way Communication Channels , 1961 .

[22]  Stefano Pirandola,et al.  Modular network for high-rate quantum conferencing , 2017, Communications Physics.

[23]  H. Lo,et al.  Random-party entanglement distillation in multiparty states , 2008 .

[24]  Ronald L. Rivest,et al.  Introduction to Algorithms , 1990 .

[25]  Kenneth Goodenough,et al.  Assessing the performance of quantum repeaters for all phase-insensitive Gaussian bosonic channels , 2015, 1511.08710.

[26]  M. Curty,et al.  Measurement-device-independent quantum key distribution. , 2011, Physical review letters.

[27]  Mark M. Wilde,et al.  Resource theory of entanglement for bipartite quantum channels , 2019, 1907.04181.

[28]  J. Cirac,et al.  Three qubits can be entangled in two inequivalent ways , 2000, quant-ph/0005115.

[29]  H. J. Kimble,et al.  The quantum internet , 2008, Nature.

[30]  J I de Vicente,et al.  Entangled Pure State Transformations via Local Operations Assisted by Finitely Many Rounds of Classical Communication. , 2016, Physical review letters.

[31]  Eneet Kaur,et al.  Amortized entanglement of a quantum channel and approximately teleportation-simulable channels , 2017, ArXiv.

[32]  V. Vedral,et al.  Entanglement in Many-Body Systems , 2007, quant-ph/0703044.

[33]  Omar Fawzi,et al.  A chain rule for the quantum relative entropy , 2020, Physical review letters.

[34]  J. Cirac,et al.  Quantum repeaters based on entanglement purification , 1998, quant-ph/9808065.

[35]  Jeroen Dehaene,et al.  On the geometry of entangled states , 2001, quant-ph/0107155.

[36]  Igor Devetak,et al.  Capacity theorems for quantum multiple-access channels: classical-quantum and quantum-quantum capacity regions , 2008, IEEE Transactions on Information Theory.

[37]  Serge Fehr,et al.  On quantum Renyi entropies: a new definition and some properties , 2013, ArXiv.

[38]  Xiongfeng Ma,et al.  Phase-Matching Quantum Key Distribution , 2018, Physical Review X.

[39]  Koji Azuma,et al.  Fundamental limitation on quantum broadcast networks , 2016, 1609.03994.

[40]  Nilanjana Datta,et al.  Min- and Max-Relative Entropies and a New Entanglement Monotone , 2008, IEEE Transactions on Information Theory.

[41]  Mark M. Wilde,et al.  Strong Converse for the Classical Capacity of Entanglement-Breaking and Hadamard Channels via a Sandwiched Rényi Relative Entropy , 2013, Communications in Mathematical Physics.

[42]  J. F. Dynes,et al.  Overcoming the rate–distance limit of quantum key distribution without quantum repeaters , 2018, Nature.

[43]  Pawel Horodecki,et al.  Multipartite secret key distillation and bound entanglement , 2008, 0811.3603.

[44]  A Streltsov,et al.  Rates of Multipartite Entanglement Transformations. , 2020, Physical review letters.

[45]  Peter W. Shor,et al.  Algorithms for quantum computation: discrete logarithms and factoring , 1994, Proceedings 35th Annual Symposium on Foundations of Computer Science.

[46]  Nilanjana Datta,et al.  The Quantum Capacity of Channels With Arbitrarily Correlated Noise , 2009, IEEE Transactions on Information Theory.

[47]  J. Cirac,et al.  Entangling operations and their implementation using a small amount of entanglement. , 2000, Physical review letters.

[48]  V. Vedral,et al.  Entanglement measures and purification procedures , 1997, quant-ph/9707035.

[49]  Igor Devetak,et al.  Quantum Broadcast Channels , 2006, IEEE Transactions on Information Theory.

[50]  Aaas News,et al.  Book Reviews , 1893, Buffalo Medical and Surgical Journal.

[51]  Mark M. Wilde,et al.  Strong Converse Exponents for a Quantum Channel Discrimination Problem and Quantum-Feedback-Assisted Communication , 2014, Communications in Mathematical Physics.

[52]  Laura Mančinska,et al.  Everything You Always Wanted to Know About LOCC (But Were Afraid to Ask) , 2012, 1210.4583.

[53]  M. Horodecki,et al.  Limits for entanglement measures. , 1999, Physical review letters.

[54]  Nicolas Gisin,et al.  Quantum key distribution between N partners: Optimal eavesdropping and Bell's inequalities , 2001 .

[55]  Antonio Acín,et al.  Perfect quantum privacy implies nonlocality. , 2009, Physical review letters.

[56]  Charles H. Bennett,et al.  Exact and asymptotic measures of multipartite pure-state entanglement , 1999, Physical Review A.

[57]  Hermann Kampermann,et al.  Conference key agreement with single-photon interference , 2019, New Journal of Physics.

[58]  P. Alam ‘S’ , 2021, Composites Engineering: An A–Z Guide.

[59]  Gilad Gour,et al.  Entanglement of a bipartite channel , 2019, Physical Review A.

[60]  Hamza Fawzi,et al.  Geometric Rényi Divergence and its Applications in Quantum Channel Capacities , 2019, Communications in Mathematical Physics.

[61]  M. Christandl,et al.  Relative Entropy Bounds on Quantum, Private and Repeater Capacities , 2016, Communications in Mathematical Physics.

[62]  I. Chuang,et al.  Quantum Computation and Quantum Information: Bibliography , 2010 .

[63]  Ekert,et al.  "Event-ready-detectors" Bell experiment via entanglement swapping. , 1993, Physical review letters.

[64]  S. Verdú,et al.  Arimoto channel coding converse and Rényi divergence , 2010, 2010 48th Annual Allerton Conference on Communication, Control, and Computing (Allerton).

[65]  M. Wilde,et al.  Quantum rebound capacity , 2019, Physical Review A.

[66]  Charles H. Bennett,et al.  Concentrating partial entanglement by local operations. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[67]  Hoi-Kwong Lo,et al.  Randomly distilling W-class states into general configurations of two-party entanglement , 2011 .

[68]  Sumeet Khatri,et al.  Robust quantum network architectures and topologies for entanglement distribution , 2017, 1709.07404.

[69]  Mark M. Wilde,et al.  Energy-Constrained Private and Quantum Capacities of Quantum Channels , 2016, IEEE Transactions on Information Theory.

[70]  W. Hager,et al.  and s , 2019, Shallow Water Hydraulics.

[71]  Renato Renner,et al.  Security of quantum key distribution , 2005, Ausgezeichnete Informatikdissertationen.

[72]  Kim-Chuan Toh,et al.  SDPT3 -- A Matlab Software Package for Semidefinite Programming , 1996 .

[73]  Physical Review , 1965, Nature.

[74]  M. Lewenstein,et al.  Quantum Entanglement , 2020, Quantum Mechanics.

[75]  A. Winter,et al.  Distillation of secret key and entanglement from quantum states , 2003, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[76]  Debbie W. Leung,et al.  On the capacities of bipartite Hamiltonians and unitary gates , 2002, IEEE Trans. Inf. Theory.

[77]  F. Hiai,et al.  The proper formula for relative entropy and its asymptotics in quantum probability , 1991 .

[78]  Stefano Pirandola,et al.  High-rate measurement-device-independent quantum cryptography , 2013, Nature Photonics.

[79]  Yongmei Huang,et al.  Satellite-to-ground quantum key distribution , 2017, Nature.

[80]  Xiaosong Ma,et al.  Quantum teleportation over 143 kilometres using active feed-forward , 2012, Nature.

[81]  Carlos Palazuelos,et al.  Resource Theory of Entanglement with a Unique Multipartite Maximally Entangled State. , 2018, Physical review letters.

[82]  Ekert,et al.  Quantum cryptography based on Bell's theorem. , 1991, Physical review letters.

[83]  Naresh Sharma,et al.  On the strong converses for the quantum channel capacity theorems , 2012, ArXiv.

[84]  W. Munro,et al.  Inside Quantum Repeaters , 2015, IEEE Journal of Selected Topics in Quantum Electronics.

[85]  A. Zeilinger,et al.  Quantum teleportation using active feed-forward between two Canary Islands , 2012, 1205.3909.

[86]  Michal Horodecki,et al.  Low-Dimensional Bound Entanglement With One-Way Distillable Cryptographic Key , 2008, IEEE Transactions on Information Theory.

[87]  Stefano Pirandola,et al.  End-to-end capacities of a quantum communication network , 2019, Communications Physics.

[88]  Masahiro Takeoka,et al.  Unconstrained Capacities of Quantum Key Distribution and Entanglement Distillation for Pure-Loss Bosonic Broadcast Channels. , 2017, Physical review letters.

[89]  Robert R. Tucci Quantum Entanglement and Conditional Information Transmission , 1999 .

[90]  Matej Pivoluska,et al.  Layered quantum key distribution , 2017, 1709.00377.

[91]  Seth Lloyd,et al.  Direct and reverse secret-key capacities of a quantum channel. , 2008, Physical review letters.

[92]  S. Wehner,et al.  Loophole-free Bell inequality violation using electron spins separated by 1.3 kilometres , 2015, Nature.

[93]  Dave Touchette,et al.  Trade-off capacities of the quantum Hadamard channels , 2010, ArXiv.

[94]  Charles H. Bennett,et al.  Mixed-state entanglement and quantum error correction. , 1996, Physical review. A, Atomic, molecular, and optical physics.

[95]  Arne Jensen,et al.  XVIIth International Congress on Mathematical Physics , 2013 .

[96]  D. Home,et al.  Multipartite Bell-type inequality by generalizing Wigner's argument , 2014, 1410.7936.

[97]  S. Lloyd,et al.  High-rate quantum cryptography in untrusted networks , 2013, 1312.4104.

[98]  Nicolai Friis,et al.  Entanglement certification from theory to experiment , 2018, Nature Reviews Physics.

[99]  W. Marsden I and J , 2012 .

[100]  Martin B. Plenio,et al.  An introduction to entanglement measures , 2005, Quantum Inf. Comput..

[101]  Graeme Smith,et al.  Playing games with multiple access channels , 2020, Nature Communications.

[102]  Chao Wang,et al.  Versatile security analysis of measurement-device-independent quantum key distribution , 2019, Physical Review A.

[103]  Koji Azuma,et al.  Versatile relative entropy bounds for quantum networks , 2017, 1707.05543.

[104]  J. Oppenheim,et al.  Secure key from bound entanglement. , 2003, Physical Review Letters.

[105]  Mark M. Wilde,et al.  Entanglement and secret-key-agreement capacities of bipartite quantum interactions and read-only memory devices , 2017, Physical Review A.

[106]  Koji Azuma,et al.  Aggregating quantum repeaters for the quantum internet , 2016, 1606.00135.

[107]  H. Umegaki Conditional expectation in an operator algebra. IV. Entropy and information , 1962 .

[108]  John A. Smolin,et al.  Entanglement of assistance and multipartite state distillation , 2005 .

[109]  R. Radner PROCEEDINGS of the FOURTH BERKELEY SYMPOSIUM ON MATHEMATICAL STATISTICS AND PROBABILITY , 2005 .

[110]  Timothy C. Ralph,et al.  Optical quantum computation , 2011 .

[111]  J. Skaar,et al.  Effects of detector efficiency mismatch on security of quantum cryptosystems , 2005, quant-ph/0511032.

[112]  Marco Lucamarini,et al.  Experimental quantum key distribution beyond the repeaterless secret key capacity , 2019, Nature Photonics.

[113]  S. Turgut,et al.  Transformations of W-type entangled states , 2010, 1003.2118.

[114]  Dong Yang,et al.  Squashed Entanglement for Multipartite States and Entanglement Measures Based on the Mixed Convex Roof , 2007, IEEE Transactions on Information Theory.

[115]  Mark M. Wilde,et al.  Hadamard quantum broadcast channels , 2016, Quantum Inf. Process..

[116]  S. Wehner,et al.  Quantum internet: A vision for the road ahead , 2018, Science.

[117]  Mark M. Wilde,et al.  Fundamental limits on the capacities of bipartite quantum interactions , 2018, Physical review letters.

[118]  Mario Berta,et al.  Converse Bounds for Private Communication Over Quantum Channels , 2016, IEEE Transactions on Information Theory.

[119]  I. Chuang,et al.  Quantum Teleportation is a Universal Computational Primitive , 1999, quant-ph/9908010.

[120]  D. J. Twitchen,et al.  A Ten-Qubit Solid-State Spin Register with Quantum Memory up to One Minute , 2019, Physical Review X.

[121]  Marco Lucamarini,et al.  Information theoretic security of quantum key distribution overcoming the repeaterless secret key capacity bound , 2018, 1805.05511.

[122]  Xiongfeng Ma,et al.  ar X iv : q ua ntp h / 05 12 08 0 v 2 1 1 A pr 2 00 6 TIMESHIFT ATTACK IN PRACTICAL QUANTUM , 2005 .

[123]  R. Renner,et al.  One-shot classical-quantum capacity and hypothesis testing. , 2010, Physical review letters.

[124]  Mark M. Wilde,et al.  Bounds on Entanglement Distillation and Secret Key Agreement for Quantum Broadcast Channels , 2015, IEEE Transactions on Information Theory.

[125]  Jonathan P Dowling,et al.  Quantum technology: the second quantum revolution , 2003, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[126]  M. Christandl,et al.  Private States, Quantum Data Hiding, and the Swapping of Perfect Secrecy. , 2016, Physical review letters.

[127]  M. Kafatos Bell's theorem, quantum theory and conceptions of the universe , 1989 .

[128]  Hoi-Kwong Lo,et al.  Fundamental rate-loss trade-off for the quantum internet , 2016, Nature Communications.

[129]  Paolo Villoresi,et al.  Experimental Satellite Quantum Communications. , 2014, Physical review letters.

[130]  P. Horodecki,et al.  W-like bound entangled states and secure key distillation , 2008, 0811.3607.

[131]  Robert R.Tucci Entanglement of Distillation and Conditional Mutual Information , 2002 .

[132]  Albert Einstein,et al.  Can Quantum-Mechanical Description of Physical Reality Be Considered Complete? , 1935 .

[133]  Hoi-Kwong Lo,et al.  Conference key agreement and quantum sharing of classical secrets with noisy GHZ states , 2005, Proceedings. International Symposium on Information Theory, 2005. ISIT 2005..

[134]  Jie Lin,et al.  Simple security analysis of phase-matching measurement-device-independent quantum key distribution , 2018, Physical Review A.

[135]  Nilanjana Datta,et al.  Max- Relative Entropy of Entanglement, alias Log Robustness , 2008, 0807.2536.

[136]  H. Lo,et al.  Random bipartite entanglement from W and W-like states. , 2006, Physical review letters.

[137]  Pranab Sen,et al.  Classical Communication Over a Quantum Interference Channel , 2011, IEEE Transactions on Information Theory.

[138]  S. Guha,et al.  Fundamental rate-loss tradeoff for optical quantum key distribution , 2014, Nature Communications.

[139]  Stefano Pirandola,et al.  Side-channel-free quantum key distribution. , 2011, Physical review letters.

[140]  Hoi-Kwong Lo,et al.  Simple security proof of twin-field type quantum key distribution protocol , 2018, npj Quantum Information.

[141]  Michal Horodecki,et al.  General Paradigm for Distilling Classical Key From Quantum States , 2009, IEEE Transactions on Information Theory.

[142]  Andris Ambainis,et al.  Private quantum channels , 2000, Proceedings 41st Annual Symposium on Foundations of Computer Science.

[143]  Igor Devetak The private classical capacity and quantum capacity of a quantum channel , 2005, IEEE Transactions on Information Theory.

[144]  D. J. Reilly,et al.  A Cryogenic Interface for Controlling Many Qubits , 2019, 1912.01299.

[145]  M. Plenio,et al.  Quantifying Entanglement , 1997, quant-ph/9702027.

[146]  S. Pirandola,et al.  General Benchmarks for Quantum Repeaters , 2015, 1512.04945.

[147]  Qiang Zhang,et al.  Large scale quantum key distribution: challenges and solutions [Invited]. , 2018, Optics express.

[148]  Stefano Pirandola,et al.  General bounds for sender-receiver capacities in multipoint quantum communications , 2016, 1603.07262.

[149]  A. Winter,et al.  “Squashed entanglement”: An additive entanglement measure , 2003, quant-ph/0308088.

[150]  Xin-She Yang,et al.  Introduction to Algorithms , 2021, Nature-Inspired Optimization Algorithms.

[151]  Jian-Wei Pan,et al.  Experimental Demonstration of High-Rate Measurement-Device-Independent Quantum Key Distribution over Asymmetric Channels. , 2018, Physical review letters.

[152]  David Elkouss,et al.  Linear programs for entanglement and key distribution in the quantum internet , 2018, Communications Physics.

[153]  Peter P. Rohde,et al.  The resurgence of the linear optics quantum interferometer — recent advances & applications , 2018, Reviews in Physics.

[154]  M. Horodecki,et al.  General teleportation channel, singlet fraction and quasi-distillation , 1998, quant-ph/9807091.

[155]  Bing Qi,et al.  Practical challenges in quantum key distribution , 2016, npj Quantum Information.

[156]  Ying Guo,et al.  Continuous-variable measurement-device-independent multipartite quantum communication , 2015, 1512.03876.

[157]  Hoi-Kwong Lo,et al.  All-photonic quantum repeaters , 2013, Nature Communications.

[158]  Matthias Christandl,et al.  Distillation of Greenberger–Horne–Zeilinger States by Combinatorial Methods , 2018, IEEE Transactions on Information Theory.

[159]  H. Nagaoka,et al.  Strong converse theorems in the quantum information theory , 1999, 1999 Information Theory and Networking Workshop (Cat. No.99EX371).

[160]  Serge Fehr,et al.  On quantum Rényi entropies: A new generalization and some properties , 2013, 1306.3142.