Ta3N5 nanotube arrays for visible light water photoelectrolysis.

Tantalum nitride (Ta3N5) has a band gap of approximately 2.07 eV, suitable for collecting more than 45% of the incident solar spectrum energy. We describe a simple method for scale fabrication of highly oriented Ta3N5 nanotube array films, by anodization of tantalum foil to achieve vertically oriented tantalum oxide nanotube arrays followed by a 700 degrees C ammonia anneal for sample crystallization and nitridation. The thin walled amorphous nanotube array structure enables transformation from tantalum oxide to Ta3N5 to occur at relatively low temperatures, while high-temperature annealing related structural aggregation that commonly occurs in particle films is avoided. In 1 M KOH solution, under AM 1.5 illumination with 0.5 V dc bias typical sample (nanotube length approximately 240 nm, wall thickness approximately 7 nm) visible light incident photon conversion efficiencies (IPCE) as high as 5.3% were obtained. The enhanced visible light activity in combination with the ordered one-dimensional nanoarchitecture makes Ta3N5 nanotube arrays films a promising candidate for visible light water photoelectrolysis.

[1]  M. Misra,et al.  Synthesis of TaON nanotube arrays by sonoelectrochemical anodization followed by nitridation: a novel catalyst for photoelectrochemical hydrogen generation from water. , 2009, Chemical communications.

[2]  Craig A Grimes,et al.  Visible to near-infrared light harvesting in TiO2 nanotube array-P3HT based heterojunction solar cells. , 2009, Nano letters.

[3]  Craig A Grimes,et al.  Long vertically aligned titania nanotubes on transparent conducting oxide for highly efficient solar cells. , 2009, Nature nanotechnology.

[4]  C. Grimes,et al.  Temperature-Dependent Growth of Self-Assembled Hematite (α-Fe2O3) Nanotube Arrays: Rapid Electrochemical Synthesis and Photoelectrochemical Properties , 2009 .

[5]  Craig A. Grimes,et al.  Recent Advances in the Use of TiO2 Nanotube and Nanowire Arrays for Oxidative Photoelectrochemistry , 2009 .

[6]  V. Birss,et al.  Controlled interconversion of nanoarray of ta dimples and high aspect ratio ta oxide nanotubes. , 2009, Nano letters.

[7]  Craig A. Grimes,et al.  High-rate solar photocatalytic conversion of CO2 and water vapor to hydrocarbon fuels. , 2009, Nano letters.

[8]  Craig A. Grimes,et al.  TiO2 Nanotube Arrays , 2009 .

[9]  Nageh K. Allam,et al.  Self-Assembled Fabrication of Vertically Oriented Ta2O5 Nanotube Arrays, and Membranes Thereof, by One-Step Tantalum Anodization , 2008 .

[10]  K. Domen,et al.  Surface Modification of TaON with Monoclinic ZrO2 to Produce a Composite Photocatalyst with Enhanced Hydrogen Evolution Activity under Visible Light , 2008 .

[11]  C. Grimes,et al.  P-type Cu--Ti--O nanotube arrays and their use in self-biased heterojunction photoelectrochemical diodes for hydrogen generation. , 2008, Nano letters.

[12]  Mukundan Thelakkat,et al.  Highly efficient solar cells using TiO(2) nanotube arrays sensitized with a donor-antenna dye. , 2008, Nano letters.

[13]  Craig A. Grimes,et al.  Appropriate strategies for determining the photoconversion efficiency of water photoelectrolysis cells : A review with examples using titania nanotube array photoanodes , 2008 .

[14]  C. Grimes,et al.  High efficiency double heterojunction polymer photovoltaic cells using highly ordered TiO2 nanotube arrays , 2007 .

[15]  Craig A Grimes,et al.  Vertically oriented Ti-Fe-O nanotube array films: toward a useful material architecture for solar spectrum water photoelectrolysis. , 2007, Nano letters.

[16]  R. Dronskowski,et al.  γ‐TaON: A Metastable Polymorph of Tantalum Oxynitride , 2007 .

[17]  Craig A. Grimes,et al.  Synthesis and application of highly ordered arrays of TiO2 nanotubes , 2007 .

[18]  Kai Zhu,et al.  Enhanced charge-collection efficiencies and light scattering in dye-sensitized solar cells using oriented TiO2 nanotubes arrays. , 2007, Nano letters.

[19]  Nick Serpone,et al.  Is the band gap of pristine TiO(2) narrowed by anion- and cation-doping of titanium dioxide in second-generation photocatalysts? , 2006, The journal of physical chemistry. B.

[20]  I. E. Grey,et al.  Efficiency of solar water splitting using semiconductor electrodes , 2006 .

[21]  Andrei Ghicov,et al.  TiO2-Nb2O5 nanotubes with electrochemically tunable morphologies. , 2006, Angewandte Chemie.

[22]  N. Lewis,et al.  Powering the planet: Chemical challenges in solar energy utilization , 2006, Proceedings of the National Academy of Sciences.

[23]  Craig A. Grimes,et al.  Anodic Growth of Highly Ordered TiO2 Nanotube Arrays to 134 μm in Length , 2006 .

[24]  Craig A Grimes,et al.  Use of highly-ordered TiO(2) nanotube arrays in dye-sensitized solar cells. , 2006, Nano letters.

[25]  C. Grimes,et al.  Water-photolysis properties of micron-length highly-ordered titania nanotube-arrays. , 2005, Journal of nanoscience and nanotechnology.

[26]  Ryuhei Nakamura,et al.  Oxygen photoevolution on a tantalum oxynitride photocatalyst under visible-light irradiation: how does water photooxidation proceed on a metal-oxynitride surface? , 2005, The journal of physical chemistry. B.

[27]  P. Liska,et al.  Highly active meso-microporous TaON photocatalyst driven by visible light. , 2005, Chemical communications.

[28]  Craig A. Grimes,et al.  The effect of electrolyte composition on the fabrication of self-organized titanium oxide nanotube arrays by anodic oxidation , 2005 .

[29]  Craig A Grimes,et al.  Enhanced photocleavage of water using titania nanotube arrays. , 2005, Nano letters.

[30]  Qinghong Zhang,et al.  Ta3N5 nanoparticles with enhanced photocatalytic efficiency under visible light irradiation. , 2004, Langmuir : the ACS journal of surfaces and colloids.

[31]  Akio Ishikawa,et al.  Electrochemical Behavior of Thin Ta3N5 Semiconductor Film , 2004 .

[32]  Chuncheng Chen,et al.  Efficient degradation of toxic organic pollutants with Ni2O3/TiO(2-x)Bx under visible irradiation. , 2004, Journal of the American Chemical Society.

[33]  K. Domen,et al.  Ta3N5 and TaON Thin Films on Ta Foil: Surface Composition and Stability , 2003 .

[34]  H. Kisch,et al.  Daylight photocatalysis by carbon-modified titanium dioxide. , 2003, Angewandte Chemie.

[35]  J. Gole,et al.  Enhanced Nitrogen Doping in TiO2 Nanoparticles , 2003 .

[36]  Akio Ishikawa,et al.  Conduction and Valence Band Positions of Ta2O5, TaON, and Ta3N5 by UPS and Electrochemical Methods , 2003 .

[37]  Charles C. Sorrell,et al.  Photo-electrochemical hydrogen generation from water using solar energy. Materials-related aspects , 2002 .

[38]  Tsuyoshi Takata,et al.  An oxynitride, TaON, as an efficient water oxidation photocatalyst under visible light irradiation (λ≤ 500 nm) , 2002 .

[39]  Akio Ishikawa,et al.  Ta3N5 as a Novel Visible Light-Driven Photocatalyst (λ<600 nm) , 2002 .

[40]  Craig A. Grimes,et al.  Titanium oxide nanotube arrays prepared by anodic oxidation , 2001 .

[41]  R. Asahi,et al.  Visible-Light Photocatalysis in Nitrogen-Doped Titanium Oxides , 2001, Science.

[42]  M. Jansen,et al.  Optical properties of Ta(3-x)Zr(x)N(5-x)O(x) semiconductor pigments , 2001 .

[43]  G. Wijs,et al.  The electronic structure of tantalum (oxy)nitrides TaON and Ta3N5 , 2001 .

[44]  M. Jansen,et al.  Inorganic yellow-red pigments without toxic metals , 2000, Nature.

[45]  A. Fujishima,et al.  Electrochemical Photolysis of Water at a Semiconductor Electrode , 1972, Nature.

[46]  G. Brauer,et al.  Synthesis and Properties of Tantalum Oxide Nitride, TaON , 1965 .