Combining Multiple Classifiers in Probabilistic Neural Networks

We first summarize main features of a new probabilistic approach to neural networks recently developed in a series of papers in the framework of statistical pattern recognition. We consider a simplifying binary approximation of the output variables and, in order to prevent the arising information loss, we propose to combine multiple solutions. However, instead of combining different a posteriori probabilities, we make a parallel use of the binary output vectors to compute the standard Bayesian classifier.

[1]  D. F. Specht,et al.  Probabilistic neural networks for classification, mapping, or associative memory , 1988, IEEE 1988 International Conference on Neural Networks.

[2]  R. Casey,et al.  Advances in Pattern Recognition , 1971 .

[3]  Sung-Bae Cho,et al.  Multiple network fusion using fuzzy logic , 1995, IEEE Trans. Neural Networks.

[4]  Roy L. Streit,et al.  Maximum likelihood training of probabilistic neural networks , 1994, IEEE Trans. Neural Networks.

[5]  Tomaso A. Poggio,et al.  Example-Based Learning for View-Based Human Face Detection , 1998, IEEE Trans. Pattern Anal. Mach. Intell..

[6]  Simon Haykin,et al.  Neural Networks: A Comprehensive Foundation , 1998 .

[7]  Bruce W. Schmeiser,et al.  Improving model accuracy using optimal linear combinations of trained neural networks , 1995, IEEE Trans. Neural Networks.

[8]  Anders Krogh,et al.  Neural Network Ensembles, Cross Validation, and Active Learning , 1994, NIPS.

[9]  Galina L. Rogova,et al.  Combining the results of several neural network classifiers , 1994, Neural Networks.

[10]  Jiri Matas,et al.  On Combining Classifiers , 1998, IEEE Trans. Pattern Anal. Mach. Intell..

[11]  Pavel Pudil,et al.  On Virtually Binary Nature of Probabilistic Neural Networks , 1998, SSPR/SPR.

[12]  R. Fildes Journal of the Royal Statistical Society (B): Gary K. Grunwald, Adrian E. Raftery and Peter Guttorp, 1993, “Time series of continuous proportions”, 55, 103–116.☆ , 1993 .

[13]  Lars Kai Hansen,et al.  Neural Network Ensembles , 1990, IEEE Trans. Pattern Anal. Mach. Intell..

[14]  D. Rubin,et al.  Maximum likelihood from incomplete data via the EM - algorithm plus discussions on the paper , 1977 .

[15]  Igor Vajda,et al.  About the maximum information and maximum likelihood principles , 1998, Kybernetika.