Attentional Object Detection with an Active Multi-Focal Vision System

A biologically inspired foveated attention system in an object detection scenario is proposed. Bottom-up attention uses wide-angle stereo camera data to select a sequence of fixation points. Successive snapshots of high foveal resolution using a telephoto camera enable highly accurate object recognition based on SIFT algorithm. Top-down information is incrementally estimated and integrated using a Kalman-filter, enabling parameter adaptation to changing environments due to robot locomotion. In the experimental evaluation, all the target objects were detected in different backgrounds. Significant improvements in flexibility and efficiency are achieved.

[1]  José R. Álvarez,et al.  Computational Methods in Neural Modeling , 2003, Lecture Notes in Computer Science.

[2]  Danica Kragic,et al.  Integrating Active Mobile Robot Object Recognition and SLAM in Natural Environments , 2006, 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[3]  Marc Toussaint,et al.  Extracting Motion Primitives from Natural Handwriting Data , 2006, ICANN.

[4]  Thierry Pun,et al.  Integration of bottom-up and top-down cues for visual attention using non-linear relaxation , 1994, 1994 Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.

[5]  Philippe Gaussier,et al.  A context and task dependent visual attention system to control a mobile robot , 2002, IEEE/RSJ International Conference on Intelligent Robots and Systems.

[6]  Nick Hawes,et al.  Towards Context-Sensitive Visual Attention , 2006 .

[7]  K. Nakayama,et al.  Priming of pop-out: I. Role of features , 1994, Memory & cognition.

[8]  James J. Little,et al.  Informed visual search: Combining attention and object recognition , 2008, 2008 IEEE International Conference on Robotics and Automation.

[9]  John K. Tsotsos,et al.  Modeling Visual Attention via Selective Tuning , 1995, Artif. Intell..

[10]  Stefan Pollmann,et al.  Neural correlates of visual dimension weighting , 2006 .

[11]  Antonio Torralba,et al.  Statistical Context Priming for Object Detection , 2001, ICCV.

[12]  Laurent Itti,et al.  An Integrated Model of Top-Down and Bottom-Up Attention for Optimizing Detection Speed , 2006, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06).

[13]  Michael C. Mozer,et al.  Top-Down Control of Visual Attention: A Rational Account , 2005, NIPS.

[14]  Robert B. Fisher,et al.  Object-based visual attention for computer vision , 2003, Artif. Intell..

[15]  Simone Frintrop,et al.  Robust Object Detection at Regions of Interest with an Application in Ball Recognition , 2005, Proceedings of the 2005 IEEE International Conference on Robotics and Automation.

[16]  Jan-Olof Eklundh,et al.  Vision in the real world: Finding, attending and recognizing objects , 2006, Int. J. Imaging Syst. Technol..

[17]  Robert B. Fisher,et al.  Special issue: Attention and performance in computer vision , 2005, Comput. Vis. Image Underst..

[18]  Tingting Xu,et al.  The Autonomous City Explorer: Towards Natural Human-Robot Interaction in Urban Environments , 2009, Int. J. Soc. Robotics.

[19]  J. Duncan,et al.  Visual search and stimulus similarity. , 1989, Psychological review.

[20]  Eli Brenner,et al.  Reliable Identification by Color under Natural Conditions the Locations Baseline Measurement , 2022 .

[21]  L. Paletta,et al.  Reinforcement Learning of Informative Attention Patterns for Object Recognition , 2005, Proceedings. The 4nd International Conference on Development and Learning, 2005..

[22]  Hao Wu,et al.  Environment adapted active multi-focal vision system for object detection , 2009, 2009 IEEE International Conference on Robotics and Automation.

[23]  John K. Tsotsos,et al.  Saliency, attention, and visual search: an information theoretic approach. , 2009, Journal of vision.

[24]  Gordon Cheng,et al.  Distributed visual attention on a humanoid robot , 2005, 5th IEEE-RAS International Conference on Humanoid Robots, 2005..

[25]  Christof Koch,et al.  Modeling attention to salient proto-objects , 2006, Neural Networks.

[26]  Heinz Hügli,et al.  A Model of Dynamic Visual Attention for Object Tracking in Natural Image Sequences , 2003, IWANN.

[27]  John K. Tsotsos,et al.  Attention and Performance in Computational Vision , 2008 .

[28]  Jun Tani,et al.  Visual Attention and Learning of a Cognitive Robot , 1997, ICANN.

[29]  Christof Koch,et al.  A Model of Saliency-Based Visual Attention for Rapid Scene Analysis , 2009 .

[30]  S Ullman,et al.  Shifts in selective visual attention: towards the underlying neural circuitry. , 1985, Human neurobiology.

[31]  Jan-Olof Eklundh,et al.  An Attentional System Combining Top-Down and Bottom-Up Influences , 2008, WAPCV.

[32]  G. Backer,et al.  Two selection stages provide efficient object-based attentional control for dynamic vision , 2003 .

[33]  A. Treisman,et al.  A feature-integration theory of attention , 1980, Cognitive Psychology.

[34]  Horst Bischof,et al.  Attentive Object Detection Using an Information Theoretic Saliency Measure , 2004, WAPCV.

[35]  J. Wolfe,et al.  Guided Search 2.0 A revised model of visual search , 1994, Psychonomic bulletin & review.

[36]  Tim K Marks,et al.  SUN: A Bayesian framework for saliency using natural statistics. , 2008, Journal of vision.

[37]  Shimon Ullman,et al.  Combining Top-Down and Bottom-Up Segmentation , 2004, 2004 Conference on Computer Vision and Pattern Recognition Workshop.

[38]  Simone Frintrop,et al.  Most salient region tracking , 2009, 2009 IEEE International Conference on Robotics and Automation.

[39]  Pietro Perona,et al.  Selective visual attention enables learning and recognition of multiple objects in cluttered scenes , 2005, Comput. Vis. Image Underst..

[40]  Tingting Xu,et al.  Autonomous switching of top-down and bottom-up attention selection for vision guided mobile robots , 2009, 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[41]  Bruce A. Draper,et al.  Evaluation of selective attention under similarity transformations , 2005, Comput. Vis. Image Underst..

[42]  Heiko Wersing,et al.  Online Learning of Objects and Faces in an Integrated Biologically Motivated Architecture , 2007, ICVS 2007.

[43]  Majid Nili Ahmadabadi,et al.  Offline Learning of Top-down Object based Attention Control , 2008 .

[44]  L. Zhaoping Attention capture by eye of origin singletons even without awareness--a hallmark of a bottom-up saliency map in the primary visual cortex. , 2008, Journal of vision.