An Unlikely Route to Low Lattice Thermal Conductivity: Small Atoms in a Simple Layered Structure

In the design of materials with low lattice thermal conductivity, compounds with high density, low speed of sound, and complexity at either the atomic, nano- or microstructural level are preferred. The layered compound Mg$_3$Sb$_2$ defies these prevailing paradigms, exhibiting lattice thermal conductivity comparable to PbTe and Bi$_2$Te$_3$, despite its low density and simple structure. The excellent thermoelectric performance ($zT$ $\sim$ 1.5) in $n$-type Mg$_3$Sb$_2$ has thus far been attributed to its multi-valley conduction band, while its anomalous thermal properties have been largely overlooked. To explain the origin of the low lattice thermal conductivity of Mg$_3$Sb$_2$, we have used both experimental methods and ab initio phonon calculations to investigate trends in the elasticity, thermal expansion and anharmonicity of $A$Mg$_2Pn_2$ Zintl compounds with $A$ = Mg, Ca, Yb, and $Pn$ = Sb and Bi. Phonon calculations within the quasi-harmonic approximation reveal large mode Gr\"uneisen parameters in Mg$_3$Sb$_2$ compared with isostructural compounds, in particular in transverse acoustic modes involving shearing of adjacent anionic layers. Measurements of the elastic moduli and sound velocity as a function of temperature using resonant ultrasound spectroscopy provide a window into the softening of the acoustic branches at high temperature, confirming their exceptionally high anharmonicity. We attribute the anomalous thermal behavior of Mg$_3$Sb$_2$ to the diminutive size of Mg, which may be too small for the octahedrally-coordinated site, leading to weak, unstable interlayer Mg-Sb bonding. This suggests more broadly that soft shear modes resulting from undersized cations provide a potential route to achieving low lattice thermal conductivity low-density, earth-abundant materials.

[1]  Gian-Marco Rignanese,et al.  High-throughput density-functional perturbation theory phonons for inorganic materials , 2018, Scientific data.

[2]  Gian-Marco Rignanese,et al.  Convergence and pitfalls of density functional perturbation theory phonons calculations from a high-throughput perspective , 2017, 1710.06028.

[3]  Bo B. Iversen,et al.  Simultaneous improvement of power factor and thermal conductivity via Ag doping in p-type Mg3Sb2 thermoelectric materials , 2017 .

[4]  Gang Chen,et al.  Recent progress and future challenges on thermoelectric Zintl materials , 2017 .

[5]  Stefano de Gironcoli,et al.  Phonons and related crystal properties from density-functional perturbation theory , 2000, cond-mat/0012092.

[6]  R. Sarpong,et al.  Bio-inspired synthesis of xishacorenes A, B, and C, and a new congener from fuscol† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c9sc02572c , 2019, Chemical science.

[7]  G. J. Snyder,et al.  Band engineering in Mg_3Sb_2 by alloying with Mg_3Bi_2 for enhanced thermoelectric performance , 2017 .

[8]  Ankita Katre,et al.  Calculating the thermal conductivity of the silicon clathrates using the quasi‐harmonic approximation , 2016 .

[9]  G. J. Snyder,et al.  Observation of valence band crossing: the thermoelectric properties of CaZn2Sb2–CaMg2Sb2 solid solution , 2018 .

[10]  G. J. Snyder,et al.  Phonon engineering through crystal chemistry , 2011 .

[11]  David J. Singh,et al.  Giant anharmonic phonon scattering in PbTe. , 2011, Nature materials.

[12]  M. Kanatzidis,et al.  High-temperature elastic moduli of thermoelectric SnTe1±x – y SiC nanoparticulate composites , 2013, Journal of Materials Science.

[13]  M. Kanatzidis,et al.  The high-temperature elastic moduli of polycrystalline PbTe measured by resonant ultrasound spectroscopy , 2008 .

[14]  Kristin A. Persson,et al.  Commentary: The Materials Project: A materials genome approach to accelerating materials innovation , 2013 .

[15]  Astronomy,et al.  Metric tensor formulation of strain in density-functional perturbation theory , 2004, cond-mat/0409269.

[16]  G. J. Snyder,et al.  Grain boundary dominated charge transport in Mg3Sb2-based compounds , 2018 .

[17]  Vinayak P. Dravid,et al.  High performance bulk thermoelectrics via a panoscopic approach , 2013 .

[18]  R. D. Shannon,et al.  Effective ionic radii in oxides and fluorides , 1969 .

[19]  Jun Mao,et al.  Tuning the carrier scattering mechanism to effectively improve the thermoelectric properties , 2017 .

[20]  J. Burdett,et al.  Fragment formalism in main-group solids: applications to aluminum boride (AlB2), calcium aluminum silicide (CaAl2Si2), barium-aluminum (BaAl4), and related materials , 1990 .

[21]  G. Madsen,et al.  Anharmonic lattice dynamics in type-I clathrates from first-principles calculations , 2005 .

[22]  W. Zeier New tricks for optimizing thermoelectric materials , 2017 .

[23]  George S. Nolas,et al.  SKUTTERUDITES : A phonon-glass-electron crystal approach to advanced thermoelectric energy conversion applications , 1999 .

[24]  A. Zevalkink,et al.  Crystal chemistry and thermoelectric transport of layered AM2X2 compounds , 2018 .

[25]  G. Scuseria,et al.  Generalized gradient approximation for solids and their surfaces , 2007, 0707.2088.

[26]  David J. Singh,et al.  Electronic and transport properties of zintl phase AeMg2Pn2, Ae = Ca,Sr,Ba, Pn = As,Sb,Bi in relation to Mg3Sb2 , 2013 .

[27]  M. Grimsditch Shear elastic modulus of graphite , 1983 .

[28]  A. Gabriel Editor , 2018, Best "New" African Poets 2018 Anthology.

[29]  K. Esfarjani,et al.  Resonant bonding leads to low lattice thermal conductivity , 2014, Nature Communications.

[30]  Wenqing Zhang,et al.  Designing high-performance layered thermoelectric materials through orbital engineering , 2016, Nature Communications.

[31]  T. Kanno,et al.  Isotropic Conduction Network and Defect Chemistry in Mg3+δSb2‐Based Layered Zintl Compounds with High Thermoelectric Performance , 2016, Advanced materials.

[32]  Yue Chen,et al.  Liquid-like thermal conduction in intercalated layered crystalline solids , 2017, Nature Materials.

[33]  A. Srivastava,et al.  Mg3Sb2-based Zintl compound: a non-toxic, inexpensive and abundant thermoelectric material for power generation , 2013 .

[34]  Dipanshu Bansal,et al.  Orbitally driven giant phonon anharmonicity in SnSe , 2015, Nature Physics.

[35]  Stefan Goedecker,et al.  ABINIT: First-principles approach to material and nanosystem properties , 2009, Comput. Phys. Commun..

[36]  G. A. Slack,et al.  Chapter 6 Semiconductor clathrates: A phonon glass electron crystal material with potential for thermoelectric applications , 2001 .

[37]  P. Cochat,et al.  Et al , 2008, Archives de pediatrie : organe officiel de la Societe francaise de pediatrie.

[38]  O. Delaire,et al.  Electronic Instability and Anharmonicity in SnSe , 2016, 1604.07077.

[39]  Eric S. Toberer,et al.  Phase Boundary Mapping to Obtain n-type Mg3Sb2-Based Thermoelectrics , 2017 .

[40]  Fang Liu,et al.  Recent developments in the ABINIT software package , 2016, Comput. Phys. Commun..

[41]  Martín Martínez-Ripoll,et al.  The crystal structure of a-Mg3Sb2 , 1974 .

[42]  A. Mewis,et al.  Α B2X2- Verbindungen mit CaAl2Si2-Struktur , 1984 .

[43]  A. Mar,et al.  Quaternary arsenides AM(1.5)Tt(0.5)As2 (A = Na, K, Rb; M = Zn, Cd; Tt = Si, Ge, Sn): size effects in CaAl2Si2- and ThCr2Si2-type structures. , 2013, Inorganic chemistry.

[44]  K. Goodson,et al.  Evaluating Broader Impacts of Nanoscale Thermal Transport Research , 2015 .

[45]  Jessica Schulze,et al.  The Nature Of The Chemical Bond , 2016 .

[46]  G. A. Slack,et al.  The Thermal Conductivity of Nonmetallic Crystals , 1979 .

[47]  J. Gladden,et al.  High Temperature Resonant Ultrasound Spectroscopy: A Review , 2010 .

[48]  B. Iversen,et al.  High-Performance Low-Cost n-Type Se-Doped Mg3Sb2-Based Zintl Compounds for Thermoelectric Application , 2017 .

[49]  B. Iversen,et al.  Discovery of high-performance low-cost n-type Mg3Sb2-based thermoelectric materials with multi-valley conduction bands , 2017, Nature Communications.

[50]  Anuj Kumar Goyal,et al.  Capturing Anharmonicity in a Lattice Thermal Conductivity Model for High-Throughput Predictions , 2017 .

[51]  H. Zabel Phonons in layered compounds , 2001 .

[52]  Jean-Pierre Fleurial,et al.  Nanostructured materials for thermoelectric applications. , 2010, Chemical communications.

[53]  T. Tritt Thermal Conductivity: Theory, Properties, and Applications , 2010 .

[54]  M. J. van Setten,et al.  The PseudoDojo: Training and grading a 85 element optimized norm-conserving pseudopotential table , 2017, Comput. Phys. Commun..

[55]  Y. Lan,et al.  Higher thermoelectric performance of Zintl phases (Eu0.5Yb0.5)1−xCaxMg2Bi2 by band engineering and strain fluctuation , 2016, Proceedings of the National Academy of Sciences.

[56]  Cormac Toher,et al.  Charting the complete elastic properties of inorganic crystalline compounds , 2015, Scientific Data.

[57]  O. Delaire,et al.  Phonon anharmonicity and negative thermal expansion in SnSe , 2016, 1608.01883.

[58]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[59]  Matthieu Verstraete,et al.  First-principles computation of material properties: the ABINIT software project , 2002 .

[60]  Xavier Gonze,et al.  Dynamical matrices, born effective charges, dielectric permittivity tensors, and interatomic force constants from density-functional perturbation theory , 1997 .

[61]  A. Mewis,et al.  AB2X2-Verbindungen mit CaAl2Si2-Struktur: X. Zur Struktur neuer ternärer Erdalkaliphosphide und -arsenide , 1984 .

[62]  D. Morelli,et al.  Role of lone-pair electrons in producing minimum thermal conductivity in nitrogen-group chalcogenide compounds. , 2011, Physical review letters.

[63]  M. Kanatzidis,et al.  High-performance bulk thermoelectrics with all-scale hierarchical architectures , 2012, Nature.

[64]  G. J. Snyder,et al.  Deformation mechanisms in high-efficiency thermoelectric layered Zintl compounds , 2017 .

[65]  P. Klemens The Scattering of Low-Frequency Lattice Waves by Static Imperfections , 1955 .

[66]  D. Hamann Optimized norm-conserving Vanderbilt pseudopotentials , 2013, 1306.4707.

[67]  V. Ozoliņš,et al.  High Performance Thermoelectricity in Earth‐Abundant Compounds Based on Natural Mineral Tetrahedrites , 2013 .

[68]  Masanari Takahashi,et al.  Lattice dynamics and elastic properties of Mg3As2 and Mg3Sb2 compounds from first-principles calculations , 2010 .

[69]  G. J. Snyder,et al.  Traversing the Metal‐Insulator Transition in a Zintl Phase: Rational Enhancement of Thermoelectric Efficiency in Yb14Mn1−xAlxSb11 , 2008 .

[70]  Tsuyoshi Murata,et al.  {m , 1934, ACML.

[71]  H. Monkhorst,et al.  SPECIAL POINTS FOR BRILLOUIN-ZONE INTEGRATIONS , 1976 .

[72]  Xavier Gonze,et al.  First-principles responses of solids to atomic displacements and homogeneous electric fields: Implementation of a conjugate-gradient algorithm , 1997 .

[73]  Wei Lai,et al.  From Bonding Asymmetry to Anharmonic Rattling in Cu12Sb4S13 Tetrahedrites: When Lone‐Pair Electrons Are Not So Lonely , 2015 .

[74]  M. G. Zhizhin,et al.  Binary and ternary compounds in the Mg-Sb-B and Mg-Bi-B systems as catalysts for the synthesis of cubic BN , 2006 .

[75]  Zhifeng Ren,et al.  Thermoelectric properties of Na-doped Zintl compound: Mg 3− x Na x Sb 2 , 2015 .

[76]  Donald T. Morelli,et al.  High Lattice Thermal Conductivity Solids , 2006 .

[77]  H. Ledbetter Relationship between Bulk‐Modulus Temperature Dependence and Thermal Expansivity , 1994 .

[78]  Micael J. T. Oliveira,et al.  Accuracy of Generalized Gradient Approximation functionals for density functional perturbation theory calculations , 2013, 1309.4805.