Considering spatiotemporal processes in big data analysis: Insights from remote sensing of land cover and land use

Data are increasingly spatio‐temporal—they are collected some‐where and at some‐time. The role of proximity in spatial process is well understood, but its value is much more uncertain for many temporal processes. Using the domain of land cover/land use (LCLU), this article asserts that analyses of big data should be grounded in understandings of underlying process. Processes exhibit behaviors over both space and time. Observations and measurements may or may not coincide with the process of interest. Identifying the presence or absence of a given process, for instance disentangling vegetation phenology from stress, requires data analysis to be informed by knowledge of the process characteristics and, critically, how these manifest themselves over the spatio‐temporal unit of analysis. Drawing from LCLU, we emphasize the need to identify process and consider process phase to quantify important signals associated with that process. The aim should be to link the seriality of the spatio‐temporal data to the phase of the process being considered. We elucidate on these points and opportunities for insights and leadership from the geographic community.

[1]  M. Haklay,et al.  Agent-Based Models and Individualism: Is the World Agent-Based? , 2000 .

[2]  A. Stewart Fotheringham,et al.  Geographical and Temporal Weighted Regression (GTWR) , 2015 .

[3]  B. Ermentrout Neural networks as spatio-temporal pattern-forming systems , 1998 .

[4]  L. Anselin Local Indicators of Spatial Association—LISA , 2010 .

[5]  Qian Du,et al.  Remote Sensing Big Data: Theory, Methods and Applications , 2018, Remote. Sens..

[6]  Scott L. Powell,et al.  Bringing an ecological view of change to Landsat‐based remote sensing , 2014 .

[7]  David Lyon,et al.  Surveillance, Snowden, and Big Data: Capacities, consequences, critique , 2014, Big Data Soc..

[8]  Joanne C. White,et al.  Analyzing spatial and temporal variability in short-term rates of post-fire vegetation return from Landsat time series , 2018 .

[9]  Weifeng Li,et al.  Spatio-temporal ecological models , 2011, Ecol. Informatics.

[10]  Juha Hyyppä,et al.  Confirmation of post-harvest spectral recovery from Landsat time series using measures of forest cover and height derived from airborne laser scanning data , 2018, Remote Sensing of Environment.

[11]  C. Brunsdon Quantitative methods II , 2017 .

[12]  Michael A. Wulder,et al.  Landsat continuity: Issues and opportunities for land cover monitoring , 2008 .

[13]  Robert B. Lees,et al.  The Basis of Glottochronology , 1953 .

[14]  Billie Turner,et al.  The sustainability principle in global agendas: Implications for understanding land-use/cover change , 1997 .

[15]  Ben Evans,et al.  The Australian Geoscience Data Cube - foundations and lessons learned , 2017 .

[16]  R. Kitchin,et al.  Big data and human geography , 2013 .

[17]  Nicholas J. Tate,et al.  A critical synthesis of remotely sensed optical image change detection techniques , 2015 .

[18]  A. Stewart Fotheringham,et al.  Geographically Weighted Regression: A Method for Exploring Spatial Nonstationarity , 2010 .

[19]  Junfang Gong,et al.  Spatiotemporal Analysis of Housing Prices in China: A Big Data Perspective , 2017 .

[20]  Keith C. Clarke,et al.  Spatio‐temporal dynamics in California's Central Valley: Empirical links to urban theory , 2005, Int. J. Geogr. Inf. Sci..

[21]  H. R. Miller,et al.  The Data Avalanche is Here: Shouldn’t We Be Digging? , 2010 .

[22]  Aki Vehtari,et al.  Practical Bayesian model evaluation using leave-one-out cross-validation and WAIC , 2015, Statistics and Computing.

[23]  Suming Jin,et al.  A land cover change detection and classification protocol for updating Alaska NLCD 2001 to 2011. , 2017 .

[24]  H. Miller Activities in Space and Time , 2004 .

[25]  S. Openshaw,et al.  Multivariate Methods and Geographical Data , 1974 .

[26]  M. Goodchild Prospects for a Space–Time GIS , 2013 .

[27]  Joanne C. White,et al.  Regional detection, characterization, and attribution of annual forest change from 1984 to 2012 using Landsat-derived time-series metrics , 2015 .

[28]  Huadong Guo,et al.  Scientific big data and Digital Earth , 2014 .

[29]  C. Torrence,et al.  A Practical Guide to Wavelet Analysis. , 1998 .

[30]  Joanne C. White,et al.  Land cover 2.0 , 2018 .

[31]  J. Townshend,et al.  Carbon emissions from tropical deforestation and regrowth based on satellite observations for the 1980s and 1990s , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[32]  A. Gelfand,et al.  The Dynamics of Location in Home Price , 2004 .

[33]  Michael Dixon,et al.  Google Earth Engine: Planetary-scale geospatial analysis for everyone , 2017 .

[34]  M. Goodchild,et al.  Data-driven geography , 2014, GeoJournal.

[35]  Joanne C. White,et al.  Disturbance-Informed Annual Land Cover Classification Maps of Canada's Forested Ecosystems for a 29-Year Landsat Time Series , 2018 .

[36]  T. Lam,et al.  Geographically weighted temporally correlated logistic regression model , 2018, Scientific Reports.

[37]  Donna Peuquet,et al.  Making Space for Time: Issues in Space-Time Data Representation , 2001, GeoInformatica.

[38]  Joanne C. White,et al.  A nationwide annual characterization of 25 years of forest disturbance and recovery for Canada using Landsat time series , 2017 .

[39]  Derek T. Anderson,et al.  Special Section Guest Editorial: Feature and Deep Learning in Remote Sensing Applications , 2018 .

[40]  Zhihan Lv,et al.  Next-Generation Big Data Analytics: State of the Art, Challenges, and Future Research Topics , 2017, IEEE Transactions on Industrial Informatics.

[41]  Marie-Josée Fortin,et al.  State‐and‐transition simulation models: a framework for forecasting landscape change , 2016 .

[42]  Martha C. Anderson,et al.  Free Access to Landsat Imagery , 2008, Science.

[43]  Richard A. Wadsworth,et al.  What is Land Cover? , 2005 .

[44]  R. Dubayah,et al.  Disturbance Distance: quantifying forests' vulnerability to disturbance under current and future conditions , 2017 .

[45]  David P. Roy,et al.  The global Landsat archive: Status, consolidation, and direction , 2016 .

[46]  Albert Y. Zomaya,et al.  Remote sensing big data computing: Challenges and opportunities , 2015, Future Gener. Comput. Syst..

[47]  Rob Kitchin,et al.  What makes Big Data, Big Data? Exploring the ontological characteristics of 26 datasets , 2016, Big Data Soc..

[48]  Peter F. Fisher,et al.  Integrating land-cover data with different ontologies: identifying change from inconsistency , 2004, Int. J. Geogr. Inf. Sci..

[49]  J. Cihlar Land cover mapping of large areas from satellites: Status and research priorities , 2000 .

[50]  Phaedon C. Kyriakidis,et al.  Geostatistical Space–Time Models: A Review , 1999 .

[51]  Hankui K. Zhang,et al.  Analysis Ready Data: Enabling Analysis of the Landsat Archive , 2018 .

[52]  Bradley P. Carlin,et al.  Bayesian measures of model complexity and fit , 2002 .

[53]  H. Balzter,et al.  Cellular automata models for vegetation dynamics , 1998 .

[54]  J. Ord,et al.  Local Spatial Autocorrelation Statistics: Distributional Issues and an Application , 2010 .

[55]  Chengquan Huang,et al.  Forest disturbance across the conterminous United States from 1985-2012: The emerging dominance of forest decline , 2016 .

[56]  R. DeFries,et al.  Land‐use choices: balancing human needs and ecosystem function , 2004 .

[57]  H. Gangloff,et al.  Permutation/randomization-based inference for environmental data , 2016, Environmental Monitoring and Assessment.

[58]  Jonathan Raper,et al.  Development of a Geomorphological Spatial Model Using Object-Oriented Design , 1995, Int. J. Geogr. Inf. Sci..

[59]  Christopher E. Holden,et al.  Improved mapping of forest type using spectral-temporal Landsat features , 2018, Remote Sensing of Environment.

[60]  Michael A. Wulder,et al.  Remote sensing methods in medium spatial resolution satellite data land cover classification of large areas , 2002 .

[61]  Mevin B Hooten,et al.  Iterative near-term ecological forecasting: Needs, opportunities, and challenges , 2018, Proceedings of the National Academy of Sciences.

[62]  P. Torrens,et al.  Building Agent‐Based Walking Models by Machine‐Learning on Diverse Databases of Space‐Time Trajectory Samples , 2011 .

[63]  Bin Jiang,et al.  Crowdsourcing, Citizen Science or Volunteered Geographic Information? The Current State of Crowdsourced Geographic Information , 2016, ISPRS Int. J. Geo Inf..

[64]  N. Coops,et al.  Satellites: Make Earth observations open access , 2014, Nature.

[65]  M. Friedl,et al.  Detecting interannual variation in deciduous broadleaf forest phenology using Landsat TM/ETM+ data , 2013 .

[66]  S. Goward,et al.  An automated approach for reconstructing recent forest disturbance history using dense Landsat time series stacks , 2010 .

[67]  Zhe Zhu,et al.  Evaluation of the Initial Thematic Output from a Continuous Change-Detection Algorithm for Use in Automated Operational Land-Change Mapping by the U.S. Geological Survey , 2016, Remote. Sens..

[68]  Thomas R. Loveland,et al.  Effects of contemporary land-use and land-cover change on the carbon balance of terrestrial ecosystems in the United States , 2018 .

[69]  Anthony Gar-On Yeh,et al.  Neural-network-based cellular automata for simulating multiple land use changes using GIS , 2002, Int. J. Geogr. Inf. Sci..

[70]  Murtaza Haider,et al.  Beyond the hype: Big data concepts, methods, and analytics , 2015, Int. J. Inf. Manag..

[71]  C. Small,et al.  Humans on Earth: Global extents of anthropogenic land cover from remote sensing , 2016 .

[72]  A. Comber,et al.  You know what land cover is but does anyone else?…an investigation into semantic and ontological confusion , 2005 .

[73]  D. Massey Space‐Time, ‘Science’ and the Relationship between Physical Geography and Human Geography , 1999 .

[74]  S. Wolfert,et al.  Big Data in Smart Farming – A review , 2017 .

[75]  May Yuan 30 years of IJGIS: the changing landscape of geographical information science and the road ahead , 2017, Int. J. Geogr. Inf. Sci..

[76]  Bo Wu,et al.  Geographically and temporally weighted regression for modeling spatio-temporal variation in house prices , 2010, Int. J. Geogr. Inf. Sci..

[77]  Alexis J. Comber,et al.  Mapping coastal land use changes 1965–2014: methods for handling historical thematic data , 2016 .

[78]  Michael A. Wulder,et al.  Characterizing the state and processes of change in a dynamic forest environment using hierarchical spatio-temporal segmentation , 2011 .

[79]  M. Deng,et al.  Geographically Weighted Extreme Learning Machine: A Method for Space-Time Prediction: GWELM for Space-Time Prediction , 2017 .

[80]  Thomas R. Gruber,et al.  A translation approach to portable ontology specifications , 1993, Knowl. Acquis..

[81]  W. Tobler On the First Law of Geography: A Reply , 2004 .

[82]  Daniel A. Griffith Modeling spatio-temporal relationships: retrospect and prospect , 2010, J. Geogr. Syst..

[83]  Zhe Zhu,et al.  Change detection using landsat time series: A review of frequencies, preprocessing, algorithms, and applications , 2017 .

[84]  Ronald P. Barry,et al.  A method for spatial–temporal forecasting with an application to real estate prices , 2000 .

[85]  Valter Di Giacinto,et al.  A Generalized Space-Time ARMA Model with an Application to Regional Unemployment Analysis in Italy , 2006 .

[86]  C. Woodcock,et al.  Continuous change detection and classification of land cover using all available Landsat data , 2014 .

[87]  Andrew U. Frank,et al.  Ontology for Spatio-temporal Databases , 2003, Spatio-Temporal Databases: The CHOROCHRONOS Approach.

[88]  B. Xu,et al.  Remote Sensing of Forests Over Time , 2003 .

[89]  Chris Brunsdon,et al.  Quantitative methods I , 2016 .

[90]  Geoff Smith,et al.  The characterisation and measurement of land cover change through remote sensing: problems in operational applications? , 2003 .

[91]  Nicholas C. Coops,et al.  Mass data processing of time series Landsat imagery: pixels to data products for forest monitoring , 2016, Int. J. Digit. Earth.

[92]  Tomoki Nakaya,et al.  Visualising Crime Clusters in a Space‐time Cube: An Exploratory Data‐analysis Approach Using Space‐time Kernel Density Estimation and Scan Statistics , 2010, Trans. GIS.

[93]  Joanne C. White,et al.  Optical remotely sensed time series data for land cover classification: A review , 2016 .

[94]  Nicola Guarino,et al.  Formal ontology, conceptual analysis and knowledge representation , 1995, Int. J. Hum. Comput. Stud..

[95]  Xiaocong Xu,et al.  A New Global Land-Use and Land-Cover Change Product at a 1-km Resolution for 2010 to 2100 Based on Human–Environment Interactions , 2017 .

[96]  W. Tobler A Computer Movie Simulating Urban Growth in the Detroit Region , 1970 .

[97]  Chaogui Kang,et al.  Social Sensing: A New Approach to Understanding Our Socioeconomic Environments , 2015 .