Multidomain modeling of nonlinear networks and systems

Many physical systems, including mechanical, electrical, electromechanical, fluid, and thermal systems, can be modeled by the Langrangian and Hamiltonian equations of motion. A key aspect of the Langrangian and Hamiltonian frameworks is the role of energy storage. In this paper, equations regarding Langrangian and Hamiltonian are discussed and compared to the Brayton-Moser equations. A practical advantage of the BM framework is that the system variables are directly expressed in terms of easily measurable quantities, such as currents, voltages, velocities, forces, volume flows, pressures, or temperatures. The Langrangian, and Hamiltonian formulation normally involve generalized displacement and momenta, which in many cases cannot be measured directly.

[1]  Colin Cherry M.Sc. A.M.I.E.E. CXVII. Some general theorems for non-linear systems possessing reactance , 1951 .

[2]  L.O. Chua,et al.  Memristive devices and systems , 1976, Proceedings of the IEEE.

[3]  Jacquelien M. A. Scherpen,et al.  Power shaping: a new paradigm for stabilization of nonlinear RLC circuits , 2003, IEEE Trans. Autom. Control..

[4]  J. O. Flower The topology of the mixed potential function , 1968 .

[5]  Leon Y. Bahar,et al.  Derivation of the Brayton–Moser equations from a topological mixed potential function☆ , 1980 .

[6]  S. Smale On the mathematical foundations of electrical circuit theory , 1972 .

[7]  H. C. Corben,et al.  Classical Mechanics (2nd ed.) , 1961 .

[8]  Miroslav Krstic Achieving Fellow Grade through CSS , 2008 .

[9]  Leon O. Chua,et al.  Device modeling via nonlinear circuit elements , 1980 .

[10]  F. A. Fuertes On the ``Power Function'' , 1946 .

[11]  R. Ortega Passivity-based control of Euler-Lagrange systems : mechanical, electrical and electromechanical applications , 1998 .

[12]  A. Schaft,et al.  Lagrangian and Hamiltonian Formulation of Transmission Line Systems with Boundary Energy Flow , 2009 .

[13]  Jacquelien M. A. Scherpen,et al.  A power-based description of standard mechanical systems , 2007, Syst. Control. Lett..

[14]  Leon O. Chua,et al.  On the geometrical meaning of pseudo hybrid content and mixed potential , 1992 .

[15]  J. K. Moser Bistable Systems of Differential Equations with Applications to Tunnel Diode Circuits , 1961, IBM J. Res. Dev..

[16]  Naomi Ehrich Leonard,et al.  Controlled Lagrangians and the stabilization of mechanical systems. I. The first matching theorem , 2000, IEEE Trans. Autom. Control..

[17]  John William Strutt,et al.  Some General Theorems relating to Vibrations , 1871 .

[18]  W. Millar CXVI. Some general theorems for non-linear systems possessing resistance , 1951 .

[19]  József Bokor,et al.  Analysis and Control of Nonlinear Process Systems , 2004 .

[20]  F. J. Evans,et al.  Variational analysis of electrical networks , 1973 .

[21]  P. Gawthrop,et al.  Bond-graph modeling , 2007, IEEE Control Systems.

[22]  L. Chua,et al.  Complete stability of autonomous reciprocal nonlinear networks , 1978 .

[23]  R. Layton Principles of Analytical System Dynamics , 1998 .

[24]  David M. Auslander,et al.  The Memristor: A New Bond Graph Element , 1972 .

[25]  Jerrold E. Marsden,et al.  Foundations of Mechanics: 2nd Edition , 1980 .

[26]  Romeo Ortega,et al.  Power–based control of physical systems: two case studies , 2008 .

[27]  D. A. Wells A ``Power Function'' for the Determination of Lagrangian Generalized Forces , 1945 .

[28]  Peter C. Breedveld,et al.  Stability of rigid body rotation from a bond graph perspective , 2008, Simul. Model. Pract. Theory.

[29]  B. Tabarrok,et al.  Variational methods and complementary formulations in dynamics , 1994 .

[30]  Ole Immanuel Franksen,et al.  The nature of data — From measurements to systems , 1985, BIT.

[31]  J. Willems The Behavioral Approach to Open and Interconnected Systems , 2007, IEEE Control Systems.

[32]  E. W. Justh,et al.  Pattern-forming systems for control of large arrays of actuators , 2001, J. Nonlinear Sci..

[33]  Romeo Ortega,et al.  Putting energy back in control , 2001 .

[34]  Jacquelien M. A. Scherpen,et al.  Tuning of passivity-preserving controllers for switched-mode power converters , 2004, IEEE Transactions on Automatic Control.

[35]  M. Liserre,et al.  Passivity-Based Harmonic Control through Series/Parallel Damping of an H-Bridge Rectifier , 2007, 2007 IEEE International Symposium on Industrial Electronics.

[36]  J. O. Flower The existence of the mixed potential function , 1968 .

[37]  F. J. Evans,et al.  Derivation of certain nonlinear circuit equations , 1967 .

[38]  A. G. J. MacFarlane,et al.  Dynamical system models , 1970 .

[39]  Osman B. Mawardi On the concept of coenergy , 1957 .

[40]  James Casey Geometrical derivation of Lagrange’s equations for a system of particles , 1994 .

[41]  Arjan van der Schaft,et al.  Non-linear dynamical control systems , 1990 .

[42]  Dimitri Jeltsema,et al.  Modeling and control of nonlinear networks : A power-based perspective , 2005 .

[43]  Malcolm C. Smith Synthesis of mechanical networks: the inerter , 2002, IEEE Trans. Autom. Control..

[44]  Ladislav A. Novak,et al.  Formulation of equations in terms of scalar functions for lumped non‐linear networks , 1981 .

[45]  Jacquelien M. A. Scherpen,et al.  On Brayton and Moser's missing stability theorem , 2005, IEEE Transactions on Circuits and Systems II: Express Briefs.

[46]  Romeo Ortega,et al.  On passivity and power-balance inequalities of nonlinear RLC circuits , 2003 .

[47]  Robert K. Brayton,et al.  A stability theory for nonlinear mixed initial boundary value problems , 1964 .

[48]  Toshiharu Sugie,et al.  Canonical Transformation and Stabilization of Generalized Hamiltonian Systems , 1998 .

[49]  C.C. Bissell Nonlinear Control Based on Physical Models [Book Review] , 2003, IEEE Control Systems.

[50]  Jacquelien M.A. Scherpen,et al.  Towards Power-Based Control Strategies for a Class of Nonlinear Mechanical Systems , 2006 .

[51]  J. Marsden,et al.  Introduction to mechanics and symmetry , 1994 .

[52]  L. Chua Stationary principles and potential functions for nonlinear networks , 1973 .

[53]  Dimitri Jeltsema,et al.  Power Shaping Control of Nonlinear Systems: A Benchmark Example , 2006 .

[54]  Wolfgang Mathis,et al.  Theorie nichtlinearer Netzwerke , 1987 .

[55]  Guido Blankenstein,et al.  Geometric modeling of nonlinear RLC circuits , 2005, IEEE Transactions on Circuits and Systems I: Regular Papers.

[56]  André Preumont,et al.  Mechatronics: Dynamics of Electromechanical and Piezoelectric Systems , 2006 .

[57]  Arjan van der Schaft,et al.  Pseudo-gradient and Lagrangian boundary control system formulation of electromagnetic fields , 2007 .

[58]  Michael J. Brennan,et al.  ON THE ORIGINS AND DEVELOPMENT OF MOBILITY AND IMPEDANCE METHODS IN STRUCTURAL DYNAMICS , 2002 .

[59]  P. Hammond Energy Methods in Electromagnetism , 1987 .

[60]  L. Chua Memristor-The missing circuit element , 1971 .

[61]  J.M.A. Scherpen,et al.  An Electrical Interpretation of Mechanical Systems via the Pseudo-inductor in the Brayton-Moser Equations , 2005, Proceedings of the 44th IEEE Conference on Decision and Control.

[62]  L. Trajković,et al.  A generalization of Brayton-Moser's mixed potential function , 1998 .

[63]  J. K. Moser,et al.  A theory of nonlinear networks. I , 1964 .

[64]  E.-H. Horneber,et al.  Application of the mixed potential for formulating normal form equations for nonlinear rlc‐networks with ideal transformers , 1978 .