Nonlinear cost network models in transportation analysis

The analysis of transportation phenomena by quantitative approaches naturally gives rise to network models that represent the spatial characteristics of the transport infrastructure. This paper surveys the nonlinear cost models that arise in transportation analysis and points out the principal methods used for their solution in practice. We discuss the network equilibrium problem, the problem of estimating an origin/destination matrix and certain concave cost network flow problems.

[1]  Stella C. Dafermos,et al.  Traffic assignment problem for a general network , 1969 .

[2]  Bernard Yaged,et al.  Minimum cost routing for static network models , 1971, Networks.

[3]  J. G. Wardrop,et al.  Some Theoretical Aspects of Road Traffic Research , 1952 .

[4]  Marc Los,et al.  Combined Residential-Location and Transportation Models , 1979 .

[5]  Robert B. Dial,et al.  A PROBABILISTIC MULTIPATH TRAFFIC ASSIGNMENT MODEL WHICH OBVIATES PATH ENUMERATION. IN: THE AUTOMOBILE , 1971 .

[6]  E. Beale,et al.  Applications of Mathematical Programming Techniques. , 1971 .

[7]  Michael Florian,et al.  An Application and Validation of Equilibrium Trip Assignment Methods , 1976 .

[8]  C. Daganzo Unconstrained Extremal Formulation of Some Transportation Equilibrium Problems , 1982 .

[9]  Stella Dafermos,et al.  An iterative scheme for variational inequalities , 1983, Math. Program..

[10]  Michael Florian An improved linear approximation algorithm for the network equilibrium (packet switching) problem , 1977, 1977 IEEE Conference on Decision and Control including the 16th Symposium on Adaptive Processes and A Special Symposium on Fuzzy Set Theory and Applications.

[11]  T. Magnanti,et al.  A linearization and decomposition algorithm for computing urban traffic equilibria , 1983 .

[12]  N. F. Stewart,et al.  Bregman's balancing method , 1981 .

[13]  Michael Florian,et al.  A Method for Computing Network Equilibrium with Elastic Demands , 1974 .

[14]  M. Florian Transportation planning models , 1984 .

[15]  Dimitri P. Bertsekas,et al.  Optimal routing and flow control methods for communication networks , 1982 .

[16]  A. Nagurney,et al.  Sensitivity analysis for the general asymmetric network equilibrium problem , 1984 .

[17]  Larry J. LeBlanc,et al.  Efficient Algorithms for Solving Elastic Demand Traffic Assignment Problems and Mode Split-Assignment Problems , 1981 .

[18]  Stella Dafermos,et al.  Traffic Equilibrium and Variational Inequalities , 1980 .

[19]  Luigi Fratta,et al.  The flow deviation method: An approach to store-and-forward communication network design , 1973, Networks.

[20]  D. Hearn,et al.  Simplical decomposition of the asymmetric traffic assignment problem , 1984 .

[21]  L G Willumsen,et al.  SATURN - A SIMULATION-ASSIGNMENT MODEL FOR THE EVALUATION OF TRAFFIC MANAGEMENT SCHEMES , 1980 .

[22]  D. de Werra,et al.  A property of minimum concave cost flows in capacitated networks , 1971 .

[23]  B. V. Shah,et al.  Some Algorithms for Minimizing a Function of Several Variables , 1964 .

[24]  B. Ahn Computation of market equilibria for policy analysis: the project independence evaluation system approach. , 1978 .

[25]  David E. Boyce,et al.  A Framework for Constructing Network Equilibrium Models of Urban Location , 1980 .

[26]  B G Hutchinson LAND USE TRANSPORT PLANNING MODELS , 1984 .

[27]  William W. Hogan,et al.  Energy policy models for project independence , 1975, Comput. Oper. Res..

[28]  A. Auslender Optimisation : méthodes numériques , 1976 .

[29]  W. Zangwill Minimum Concave Cost Flows in Certain Networks , 1968 .

[30]  Michael Florian,et al.  Traffic Equilibrium Methods , 1976 .

[31]  George L. Nemhauser,et al.  A Column Generation Algorithm for Optimal Traffic Assignment , 1973 .

[32]  Sang Nguyen,et al.  Modéles De Distribution Spatiale Tenant Compte Des ItinéRaires , 1983 .

[33]  Clyde L. Monma,et al.  Send-and-Split Method for Minimum-Concave-Cost Network Flows , 1987, Math. Oper. Res..

[34]  Bruce L. Golden,et al.  A minimum-cost multicommodity network flow problem concerning imports and exports , 1975, Networks.

[35]  A. Ohuchi,et al.  AN ALGORITHM FOR THE HITCHCOCK TRANSPORTATION PROBLEMS WITH QUADRATIC COST FUNCTIONS , 1981 .

[36]  C. Fisk,et al.  Alternative Variational Inequality Formulations of the Network Equilibrium-Travel Choice Problem , 1983 .

[37]  Philip Wolfe,et al.  An algorithm for quadratic programming , 1956 .

[38]  M. Florian,et al.  A combined trip distribution modal split and trip assignment model , 1978 .

[39]  D. Kinderlehrer,et al.  An introduction to variational inequalities and their applications , 1980 .

[40]  M. Florian A Traffic Equilibrium Model of Travel by Car and Public Transit Modes , 1977 .

[41]  Mario Gerla,et al.  Optimal Routing in a Packet-Switched Computer Network , 1974, IEEE Transactions on Computers.

[42]  Michael Florian,et al.  VALIDATION AND APPLICATION OF AN EQUILIBRIUM-BASED TWO-MODE URBAN TRANSPORTATION PLANNING METHOD (EMME) , 1979 .

[43]  C. Fisk Some developments in equilibrium traffic assignment , 1980 .

[44]  Norman Zadeh,et al.  On building minimum cost communication networks , 1973, Networks.

[45]  Richard M. Soland,et al.  Optimal Facility Location with Concave Costs , 1974, Oper. Res..

[46]  E. Polak Introduction to linear and nonlinear programming , 1973 .

[47]  William W. Hogan,et al.  On Convergence of the PIES Algorithm for Computing Equilibria , 1982, Oper. Res..

[48]  Per-Åke Anderson On the convergence of iterative methods for the distribution balancing problem , 1981 .

[49]  Warrren B Powell,et al.  The Convergence of Equilibrium Algorithms with Predetermined Step Sizes , 1982 .

[50]  E. Jaynes Information Theory and Statistical Mechanics , 1957 .

[51]  Neil F. Stewart,et al.  Iterative numerical methods for trip distribution problems , 1974 .

[52]  M. Florian AN INTRODUCTION TO NETWORK MODELS USED IN TRANSPORTATION PLANNING , 1984 .

[53]  J. E. Burrell Multiple Route Assignment: A Comparison of Two Methods , 1976 .

[54]  N. F. Stewart,et al.  NOTES ON THE MATHEMATICAL STRUCTURE OF EQUILIBRIUM MODELS , 1979 .

[55]  A. Wyner,et al.  Analysis and Optimization of Systems , 1988 .

[56]  Solomon Kullback,et al.  Information Theory and Statistics , 1960 .

[57]  Larry J. LeBlanc,et al.  Methods for Combining Modal Split and Equilibrium Assignment Models , 1979 .

[58]  Andrés Weintraub,et al.  An algorithm for the traffic assignment problem , 1980, Networks.

[59]  T. Magnanti MODELS AND ALGORITHMS FOR PREDICTING URBAN TRAFFIC EQUILIBRIA , 1984 .

[60]  Clermont Dupuis,et al.  An Efficient Method for Computing Traffic Equilibria in Networks with Asymmetric Transportation Costs , 1984, Transp. Sci..

[61]  Donald W. Hearn,et al.  The gap function of a convex program , 1982, Operations Research Letters.

[62]  T. Koopmans,et al.  Studies in the Economics of Transportation. , 1956 .

[63]  S. Dafermos Relaxation Algorithms for the General Asymmetric Traffic Equilibrium Problem , 1982 .

[64]  T. Magnanti,et al.  Equilibria on a Congested Transportation Network , 1981 .

[65]  Sang Nguyen,et al.  A Unified Approach to Equilibrium Methods for Traffic Assignment , 1976 .

[66]  Sang Nguyen,et al.  Solution Algorithms for Network Equilibrium Models with Asymmetric User Costs , 1982 .

[67]  David E. Boyce,et al.  A note on trip matrix estimation from link traffic count data , 1983 .

[68]  Jacques A. Ferland,et al.  Minimum Cost Multicommodity Circulation Problem with Convex Arc-Costs , 1974 .

[69]  J. Weibull,et al.  A minimum information principle: Theory and practice , 1977 .

[70]  M. Florian,et al.  On Binary Mode Choice/Assignment Models , 1983 .

[71]  S. Nguyen An Algorithm for the Traffic Assignment Problem , 1974 .

[72]  Mike Smith,et al.  The existence, uniqueness and stability of traffic equilibria , 1979 .

[73]  Alan Wilson,et al.  Entropy in urban and regional modelling , 1972, Handbook on Entropy, Complexity and Spatial Dynamics.

[74]  Suzanne P. Evans,et al.  DERIVATION AND ANALYSIS OF SOME MODELS FOR COMBINING TRIP DISTRIBUTION AND ASSIGNMENT , 1976 .

[75]  Sang Nguyen,et al.  Existence and Uniqueness Properties of an Asymmetric Two-Mode Equilibrium Model , 1981 .

[76]  R. Asmuth Traffic network equilibria , 1978 .

[77]  Charles A. Holloway An extension of the frank and Wolfe method of feasible directions , 1974, Math. Program..

[78]  M. Florian,et al.  The convergence of diagonalization algorithms for asymmetric network equilibrium problems , 1982 .

[79]  Alan Wilson,et al.  A statistical theory of spatial distribution models , 1967 .

[80]  W. Deming,et al.  On a Least Squares Adjustment of a Sampled Frequency Table When the Expected Marginal Totals are Known , 1940 .

[81]  J G Wardrop,et al.  CORRESPONDENCE. SOME THEORETICAL ASPECTS OF ROAD TRAFFIC RESEARCH. , 1952 .

[82]  R. M. Oliver,et al.  Flows in transportation networks , 1972 .

[83]  Michael Florian,et al.  An efficient implementation of the "partan" variant of the linear approximation method for the network equilibrium problem , 1987, Networks.

[84]  Thomas R. Jefferson,et al.  The analysis of entropy models with equality and inequality constraints , 1979 .

[85]  N. F. Stewart,et al.  ON THE CALIBRATION OF THE COMBINED DISTRIBUTION-ASSIGNMENT MODEL , 1979 .

[86]  Vantagnetta,et al.  CAPACITY-RESTRAINED ROAD ASSIGNMENT , 1979 .

[87]  Stella Dafermos,et al.  An Extended Traffic Assignment Model with Applications to Two-Way Traffic , 1971 .

[88]  N. Josephy Newton's Method for Generalized Equations. , 1979 .

[89]  L. Bregman The relaxation method of finding the common point of convex sets and its application to the solution of problems in convex programming , 1967 .

[90]  Stella Dafermos,et al.  The general multimodal network equilibrium problem with elastic demand , 1982, Networks.

[91]  S. P. Evans,et al.  A three-dimensional furness procedure for calibrating gravity models , 1974 .

[92]  S. Dafermos The Traffic Assignment Problem for Multiclass-User Transportation Networks , 1972 .

[93]  Larry J. LeBlanc,et al.  AN EFFICIENT APPROACH TO SOLVING THE ROAD NETWORK EQUILIBRIUM TRAFFIC ASSIGNMENT PROBLEM. IN: THE AUTOMOBILE , 1975 .

[94]  Jong-Shi Pang,et al.  Iterative methods for variational and complementarity problems , 1982, Math. Program..

[95]  F. Knight Some Fallacies in the Interpretation of Social Cost , 1924 .

[96]  G. Gallo,et al.  Adjacent extreme flows and application to min concave cost flow problems , 1979, Networks.

[97]  Norman Zadeh,et al.  On building minimum cost communication networks over time , 1974, Networks.

[98]  J. G. Klincewicz,et al.  A scaled reduced gradient algorithm for network flow problems with convex separable costs , 1981 .

[99]  E. M. L. Beale,et al.  Nonlinear Programming: A Unified Approach. , 1970 .

[100]  Giorgio Gallo,et al.  An algorithm for the min concave cost flow problem , 1980 .

[101]  D. Bertsekas,et al.  Projection methods for variational inequalities with application to the traffic assignment problem , 1982 .

[102]  Sang Nguyen,et al.  On the Combined Distribution-Assignment of Traffic , 1975 .

[103]  Giorgio Gallo,et al.  SHORTEST PATH METHODS IN TRANSPORTATION MODELS , 1984 .