Fermi LAT Search for Internal Bremsstrahlung Signatures from Dark Matter Annihilation

A commonly encountered obstacle in indirect searches for galactic dark matter is how to disentangle possible signals from astrophysical backgrounds. Given that such signals are most likely subdominant, the search for pronounced spectral features plays a key role for indirect detection experiments; monochromatic gamma-ray lines or similar features related to internal bremsstrahlung, in particular, provide smoking gun signatures. We perform a dedicated search for the latter in the data taken by the Fermi gamma-ray space telescope during its first 43 months. To this end, we use a new adaptive procedure to select optimal target regions that takes into account both standard and contracted dark matter profiles. The behaviour of our statistical method is tested by a subsampling analysis of the full sky data and found to reproduce the theoretical expectations very well. The limits on the dark matter annihilation cross-section that we derive are stronger than what can be obtained from the observation of dwarf galaxies and, at least for the model considered here, collider searches. While these limits are still not quite strong enough to probe annihilation rates expected for thermally produced dark matter, future prospects to do so are very good. In fact, we already find a weak indication, with a significance of 3.1σ (4.3σ) when (not) taking into account the look-elsewhere effect, for an internal bremsstrahlung-like signal that would correspond to a dark matter mass of ~150 GeV; the same signal is also well fitted by a gamma-ray line at around 130 GeV. Although this would be a fascinating possibility, we caution that a much more dedicated analysis and additional data will be necessary to rule out or confirm this option.

[1]  W. Keung,et al.  Generic dark matter signature for gamma-ray telescopes , 2009, 0906.3009.

[2]  Robert P. Johnson,et al.  Pre-launch estimates for GLAST sensitivity to dark matter annihilation signals , 2008, 0806.2911.

[3]  C. Jackson,et al.  Higgs in space , 2009, 0912.0004.

[4]  Takeuchi,et al.  Estimation of oblique electroweak corrections. , 1992, Physical review. D, Particles and fields.

[5]  J. Chiang,et al.  Constraints on cosmological dark matter annihilation from the Fermi-LAT isotropic diffuse gamma-ray measurement , 2010, 1002.4415.

[6]  Wolfgang A. Rolke,et al.  Limits and confidence intervals in the presence of nuisance parameters , 2004, physics/0403059.

[7]  Takeuchi,et al.  New constraint on a strongly interacting Higgs sector. , 1990, Physical review letters.

[8]  J. S. White,et al.  Search for anomalous production of dilepton events with missing transverse momentum in e+ e- collisions at s**(1/2) = 183-Gev to 209-GeV , 1998 .

[9]  P. Salucci,et al.  The dark matter density at the Sun’s location , 2010, 1003.3101.

[10]  A. Simone,et al.  On the importance of electroweak corrections for Majorana dark matter indirect detection , 2011, 1104.2996.

[11]  Alan D. Martin,et al.  Review of Particle Physics , 2010 .

[12]  Michele Doro,et al.  Dark matter signals from Draco and Willman 1: prospects for MAGIC II and CTA , 2008, 0809.2269.

[13]  Torsten Bringmann,et al.  On the Relevance of Sharp Gamma-Ray Features for Indirect Dark Matter Searches , 2011, 1106.1874.

[14]  G. Bertone,et al.  Particle dark matter: Evidence, candidates and constraints , 2004, hep-ph/0404175.

[15]  Baryonic pinching of galactic dark matter halos , 2006, astro-ph/0608634.

[16]  Neutralino annihilation to q qbar g , 2006, hep-ph/0608215.

[17]  Bruce Yabsley,et al.  Search for squarks and gluinos using final states with jets and missing transverse momentum with the ATLAS detector in $\sqrt{s}=7$ TeV proton-proton collisions , 2011 .

[18]  K. Olive,et al.  Radiative processes in LSP annihilation , 1989 .

[19]  J. Chiang,et al.  THE LARGE AREA TELESCOPE ON THE FERMI GAMMA-RAY SPACE TELESCOPE MISSION , 2009, 0902.1089.

[20]  Increasing the neutralino relic abundance with slepton coannihilations: consequences for indirect dark matter detection , 2006, hep-ph/0609290.

[21]  Infn,et al.  Neutralino annihilation into gamma-rays in the Milky Way and in external galaxies , 2004, hep-ph/0407342.

[22]  Lisa Randall,et al.  Wino cold dark matter from anomaly mediated SUSY breaking , 2000 .

[23]  M. Perelstein,et al.  Neutralino annihilation into two photons , 1997, hep-ph/9706538.

[24]  P. Jetzer,et al.  Dark Matter distribution in the Milky Way: microlensing and dynamical constraints , 2011, 1107.5810.

[25]  A. Geringer-Sameth,et al.  Exclusion of canonical weakly interacting massive particles by joint analysis of Milky Way dwarf galaxies with data from the Fermi Gamma-Ray Space Telescope. , 2011, Physical review letters.

[26]  Aleksandra Drozd,et al.  Two-component dark matter , 2013, 1309.2986.

[27]  Edward J. Wollack,et al.  FIVE-YEAR WILKINSON MICROWAVE ANISOTROPY PROBE OBSERVATIONS: COSMOLOGICAL INTERPRETATION , 2008, 0803.0547.

[28]  Christoph Weniger,et al.  A Tentative Gamma-Ray Line from Dark Matter Annihilation at the Fermi Large Area Telescope , 2012, 1204.2797.

[29]  Gamma rays from Kaluza-Klein dark matter. , 2004, Physical review letters.

[30]  Oleg Y Gnedin,et al.  Dark matter profile in the galactic center. , 2004, Physical review letters.

[31]  A. Geringer-Sameth,et al.  Exclusion of canonical weakly interacting massive particles by joint analysis of Milky Way dwarf galaxies with data from the Fermi Gamma-Ray Space Telescope. , 2011, Physical review letters.

[32]  A. R. Bazer-Bachi,et al.  Search for a dark matter annihilation signal from the galactic center halo with H.E.S.S. , 2011, Physical review letters.

[33]  J. Chiang,et al.  FERMI-LAT OBSERVATIONS OF THE DIFFUSE γ-RAY EMISSION: IMPLICATIONS FOR COSMIC RAYS AND THE INTERSTELLAR MEDIUM , 2012 .

[34]  T. Bringmann,et al.  New positron spectral features from supersymmetric dark matter: A way to explain the PAMELA data? , 2008, 0808.3725.

[35]  D. Nagai,et al.  Halo Contraction Effect in Hydrodynamic Simulations of Galaxy Formation , 2011, 1108.5736.

[36]  P. Gondolo,et al.  Neutralino with the right cold dark matter abundance in (almost) any supersymmetric model , 2006, hep-ph/0602230.

[37]  Brian E. Granger,et al.  IPython: A System for Interactive Scientific Computing , 2007, Computing in Science & Engineering.

[38]  Y. Mambrini A clear Dark Matter gamma ray line generated by the Green-Schwarz mechanism , 2009, 0907.2918.

[39]  The Aleph Collaboration,et al.  Precision electroweak measurements on the Z resonance , 2005, hep-ex/0509008.

[40]  T Glanzman,et al.  Constraining dark matter models from a combined analysis of Milky Way satellites with the Fermi Large Area Telescope. , 2011, Physical review letters.

[41]  G. Bertone,et al.  Gamma ray lines from a universal extra dimension , 2010, 1009.5107.

[42]  Lars Bergstrom,et al.  New gamma-ray contributions to supersymmetric dark matter annihilation , 2007, 0710.3169.

[43]  Giovanni Calderini,et al.  Search for squarks and gluinos using final states with jets and missing transverse momentum with the ATLAS detector in $\sqrt{s}=7$ TeV proton-proton collisions , 2011 .

[44]  C. Frenk,et al.  The Aquarius Project : the subhalos of galactic halos , 2008 .

[45]  P. Ullio,et al.  Clumpy Neutralino Dark Matter , 1998, astro-ph/9806072.

[46]  Eric Jones,et al.  SciPy: Open Source Scientific Tools for Python , 2001 .

[47]  G. Bertone,et al.  The WIMP Forest: Indirect Detection of a Chiral Square , 2009, 0904.1442.

[48]  S. Rosier-Lees,et al.  Indirect search for dark matter with micrOMEGAs_2.4 , 2010, Comput. Phys. Commun..

[49]  N. Bell,et al.  W / Z bremsstrahlung as the dominant annihilation channel for dark matter , 2010, 1009.2584.

[50]  Edward J. Wollack,et al.  FIVE-YEAR WILKINSON MICROWAVE ANISOTROPY PROBE * OBSERVATIONS: COSMOLOGICAL INTERPRETATION , 2008, 0803.0547.

[51]  Edward J. Wollack,et al.  Three Year Wilkinson Microwave Anistropy Probe (WMAP) Observations: Polarization Analysis , 2006, astro-ph/0603450.

[52]  A. Ibarra,et al.  Dark matter annihilations into two light fermions and one gauge boson: general analysis and antiproton constraints , 2011, 1112.5155.

[53]  CNRSIN2p3,et al.  Direct constraints on minimal supersymmetry from Fermi-LAT observations of the dwarf galaxy Segue 1 , 2009, 0909.3300.

[54]  G. Bertone The moment of truth for WIMP dark matter , 2010, Nature.

[55]  N. Bell,et al.  W/Z Bremsstrahlung as the Dominant Annihilation Channel for Dark Matter, Revisited , 2011, 1104.3823.

[56]  D. Finkbeiner,et al.  GIANT GAMMA-RAY BUBBLES FROM FERMI-LAT: ACTIVE GALACTIC NUCLEUS ACTIVITY OR BIPOLAR GALACTIC WIND? , 2010, 1005.5480.

[57]  Gianfranco Bertone,et al.  Implications of High-Resolution Simulations on Indirect Dark Matter Searches , 2009, 0908.0195.

[58]  Gino Tosti,et al.  Constraints on dark matter annihilation in clusters of galaxies with the Fermi large area telescope , 2010 .

[59]  Gamma-ray Constraint on galactic positron production by MeV dark matter. , 2004, Physical review letters.

[60]  C. Kilic,et al.  Conservative constraints on dark matter from the Fermi-LAT isotropic diffuse gamma-ray background spectrum , 2010, 1002.3820.

[61]  E. Gross,et al.  Trial factors for the look elsewhere effect in high energy physics , 2010, 1005.1891.

[62]  R. Cai,et al.  Acoustic signatures in the Cosmic Microwave Background bispectrum from primordial magnetic fields , 2010, 1006.2985.

[63]  N. Bell,et al.  Dark matter annihilation signatures from electroweak bremsstrahlung , 2011, 1101.3357.

[64]  A. Ibarra,et al.  Internal bremsstrahlung signatures in light of direct dark matter searches , 2013, 1306.6342.

[65]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[66]  J. Zupan,et al.  Dark matter with a late decaying dark partner , 2008, 0810.4147.

[67]  S. White,et al.  A Universal Density Profile from Hierarchical Clustering , 1996, astro-ph/9611107.

[68]  Takeo Moroi Muon anomalous magnetic dipole moment in the minimal supersymmetric standard model. , 1996 .

[69]  Durham,et al.  The Aquarius Project: the subhaloes of galactic haloes , 2008, 0809.0898.

[70]  J. Cembranos,et al.  Photon spectra from WIMP annihilation , 2010, 1009.4936.

[71]  P. Nāth,et al.  Supersymmetric Dark Matter , 1995, hep-ph/9610460.

[72]  J. Chiang,et al.  Fermi large area telescope search for photon lines from 30 to 200 GeV and dark matter implications. , 2010, Physical review letters.

[73]  Dennis V. Perepelitsa,et al.  Muon ( g − 2 ) , 2008 .

[74]  A. Simone,et al.  Initial state radiation in Majorana Dark Matter annihilations , 2011, 1107.4453.

[75]  G. Vertongen,et al.  Probing dark matter decay and annihilation with Fermi LAT observations of nearby galaxy clusters , 2011, 1110.1529.

[76]  Full one-loop calculation of neutralino annihilation into two photons , 1997, hep-ph/9706232.

[77]  Lars Bergstr Non-baryonic dark matter: observational evidence and detection methods , 2000 .

[78]  Unlisted,et al.  Fermi LAT Search for Photon Lines from 30 to 200 GeV , 2010 .

[79]  S. Faber,et al.  Contraction of Dark Matter Galactic Halos Due to Baryonic Infall , 1986 .

[80]  A. Ibarra,et al.  Antiproton constraints on dark matter annihilations from internal electroweak bremsstrahlung , 2011, 1105.5367.

[81]  F. Zwicky Republication of: The redshift of extragalactic nebulae , 1933 .

[82]  Significant gamma lines from inert Higgs dark matter. , 2007, Physical review letters.

[83]  T. Moroi Muon anomalous magnetic dipole moment in the minimal supersymmetric standard model. , 1996, Physical review. D, Particles and fields.

[84]  T. Bringmann,et al.  Indirect dark matter searches as a probe of degenerate particle spectra , 2011, 1112.5158.

[85]  Lars Bergström,et al.  Radiative Processes in Dark Matter Photino Annihilation , 1989 .

[86]  Howard E. Haber,et al.  The Search for Supersymmetry: Probing Physics Beyond the Standard Model , 1985 .

[87]  Yasushi Fukazawa,et al.  OBSERVATIONS OF MILKY WAY DWARF SPHEROIDAL GALAXIES WITH THE FERMI-LARGE AREA TELESCOPE DETECTOR AND CONSTRAINTS ON DARK MATTER MODELS , 2010 .

[88]  A. Ealet,et al.  Search for Scalar Quarks in e + e − Collisions at √ s up to 209 GeV The ALEPH Collaboration , 2022 .

[89]  Two photon annihilation of Kaluza-Klein dark matter , 2004, hep-ph/0412001.

[90]  Q. Cao,et al.  Dark Matter: The Leptonic Connection , 2009, 0901.1334.

[91]  M. Perelstein,et al.  Dark matter identification with gamma rays from dwarf galaxies , 2010, 1007.0018.

[92]  J. Hisano,et al.  Direct detection of dark matter degenerate with colored particles in mass , 2011, 1110.3719.

[93]  U. Washington,et al.  The inner structure of ΛCDM haloes – III. Universality and asymptotic slopes , 2003, astro-ph/0311231.

[94]  M. Cirelli Indirect searches for dark matter , 2012, 1202.1454.

[95]  M. Kachelrieß,et al.  Role of electroweak bremsstrahlung for indirect dark matter signatures , 2009, 0911.0001.

[96]  G. Vertongen,et al.  Hunting dark matter gamma-ray lines with the Fermi LAT , 2011, 1101.2610.

[97]  S. Mrenna,et al.  Pythia 6.3 physics and manual , 2003, hep-ph/0308153.

[98]  Searches for supersymmetric particles in $e^+e^-$ collisions up to 208~GeV, , 2003, hep-ex/0311019.

[99]  Supersymmetric dark matter in light of WMAP , 2003, hep-ph/0303043.

[100]  L. Bergström Saas-Fee Lecture Notes: Multi-messenger Astronomy and Dark Matter , 2012 .

[101]  W. Keung,et al.  Bremsstrahlung in dark matter annihilation , 2011, 1111.4523.

[102]  D. Seckel,et al.  Three exceptions in the calculation of relic abundances. , 1991, Physical review. D, Particles and fields.

[103]  Neutralino annihilation into a photon and a Z boson , 1997, hep-ph/9707333.

[104]  A Supersymmetry Primer , 1997, hep-ph/9709356.

[105]  W. Rolke,et al.  Confidence Intervals with Frequentist Treatment of Statistical and Systematic Uncertainties , 2004 .

[106]  Bergström,et al.  Observable monochromatic photons from cosmic photino annihilation. , 1988, Physical review. D, Particles and fields.

[107]  R. Catena,et al.  A novel determination of the local dark matter density , 2009, 0907.0018.