Adaptive Multiclass Classification for Brain Computer Interfaces

We consider the problem of multiclass adaptive classification for brain-computer interfaces and propose the use of multiclass pooled mean linear discriminant analysis (MPMLDA), a multiclass generalization of the adaptation rule introduced by Vidaurre, Kawanabe, von Bünau, Blankertz, and Müller (2010) for the binary class setting. Using publicly available EEG data sets and tangent space mapping (Barachant, Bonnet, Congedo, & Jutten, 2012) as a feature extractor, we demonstrate that MPMLDA can significantly outperform state-of-the-art multiclass static and adaptive methods. Furthermore, efficient learning rates can be achieved using data from different subjects.

[1]  Jeffrey M. Hausdorff,et al.  Physionet: Components of a New Research Resource for Complex Physiologic Signals". Circu-lation Vol , 2000 .

[2]  Janez Demsar,et al.  Statistical Comparisons of Classifiers over Multiple Data Sets , 2006, J. Mach. Learn. Res..

[3]  Ian T. Jolliffe,et al.  Principal Component Analysis , 2002, International Encyclopedia of Statistical Science.

[4]  D. Yao,et al.  An Enhanced Probabilistic LDA for Multi-Class Brain Computer Interface , 2011, PloS one.

[5]  Motoaki Kawanabe,et al.  Toward Unsupervised Adaptation of LDA for Brain–Computer Interfaces , 2011, IEEE Transactions on Biomedical Engineering.

[6]  Cuntai Guan,et al.  Filter Bank Common Spatial Pattern Algorithm on BCI Competition IV Datasets 2a and 2b , 2012, Front. Neurosci..

[7]  H. Karcher Riemannian center of mass and mollifier smoothing , 1977 .

[8]  Klaus-Robert Müller,et al.  Machine-Learning Based Co-adaptive Calibration : Towards a Cure for BCI illiteracy , 2010 .

[9]  Robert P. W. Duin,et al.  Using two-class classifiers for multiclass classification , 2002, Object recognition supported by user interaction for service robots.

[10]  D. Pfeffermann,et al.  Small area estimation , 2011 .

[11]  S. Gielen,et al.  The brain–computer interface cycle , 2009, Journal of neural engineering.

[12]  R. Fisher THE USE OF MULTIPLE MEASUREMENTS IN TAXONOMIC PROBLEMS , 1936 .

[13]  K.-R. Muller,et al.  Linear and nonlinear methods for brain-computer interfaces , 2003, IEEE Transactions on Neural Systems and Rehabilitation Engineering.

[14]  David J. C. MacKay,et al.  Bayesian Interpolation , 1992, Neural Computation.

[15]  John Q. Gan,et al.  Sequential EM for Unsupervised Adaptive Gaussian Mixture Model Based Classifier , 2009, MLDM.

[16]  Lei,et al.  Probabilistic Methods in Multi-Class Brain-Computer Interface , 2009 .

[17]  Maher Moakher,et al.  A Differential Geometric Approach to the Geometric Mean of Symmetric Positive-Definite Matrices , 2005, SIAM J. Matrix Anal. Appl..

[18]  Moritz Grosse-Wentrup,et al.  Multiclass Common Spatial Patterns and Information , 2008 .

[19]  David J. C. MacKay,et al.  Information Theory, Inference, and Learning Algorithms , 2004, IEEE Transactions on Information Theory.

[20]  Vicenç Gómez,et al.  Quantitative analysis of task selection for brain–computer interfaces , 2014, Journal of neural engineering.

[21]  K.-R. Muller,et al.  Optimizing Spatial filters for Robust EEG Single-Trial Analysis , 2008, IEEE Signal Processing Magazine.

[22]  P. Thomas Fletcher,et al.  Principal Geodesic Analysis on Symmetric Spaces: Statistics of Diffusion Tensors , 2004, ECCV Workshops CVAMIA and MMBIA.

[23]  D. Thompson,et al.  A History of Greek Mathematics , 1922, Nature.

[24]  Maher Moakher,et al.  The Riemannian Geometry of the Space of Positive-Definite Matrices and Its Application to the Regularization of Positive-Definite Matrix-Valued Data , 2011, Journal of Mathematical Imaging and Vision.

[25]  Klaus-Robert Müller,et al.  Increase Information Transfer Rates in BCI by CSP Extension to Multi-class , 2003, NIPS.

[26]  Christa Neuper,et al.  A Comparative Analysis of Multi-Class EEG Classification for Brain Computer Interface , 2005 .

[27]  R. B. Reilly,et al.  FASTER: Fully Automated Statistical Thresholding for EEG artifact Rejection , 2010, Journal of Neuroscience Methods.

[28]  P. Varona,et al.  Assisted closed-loop optimization of SSVEP-BCI efficiency , 2012, Front. Neural Circuits.

[29]  G. Pfurtscheller,et al.  Brain-Computer Interfaces for Communication and Control. , 2011, Communications of the ACM.

[30]  José del R. Millán,et al.  Evaluation Criteria for BCI Research , 2007 .

[31]  Christian Jutten,et al.  Multiclass Brain–Computer Interface Classification by Riemannian Geometry , 2012, IEEE Transactions on Biomedical Engineering.

[32]  T. Banchoff,et al.  Differential Geometry of Curves and Surfaces , 2010 .

[33]  Rajesh P. N. Rao,et al.  Towards adaptive classification for BCI , 2006, Journal of neural engineering.

[34]  Kazuyuki Aihara,et al.  Adapting Spatial Filter Methods for Nonstationary BCIs , 2006 .

[35]  Vicenç Gómez,et al.  Adaptive Classification on Brain-Computer Interfaces Using Reinforcement Signals , 2012, Neural Computation.

[36]  Javier Gomez-Pilar,et al.  Adaptive Stacked Generalization for Multiclass Motor Imagery-Based Brain Computer Interfaces , 2015, IEEE Transactions on Neural Systems and Rehabilitation Engineering.

[37]  Jdel.R. Millan,et al.  On the need for on-line learning in brain-computer interfaces , 2004, 2004 IEEE International Joint Conference on Neural Networks (IEEE Cat. No.04CH37541).

[38]  Cuntai Guan,et al.  EEG Data Space Adaptation to Reduce Intersession Nonstationarity in Brain-Computer Interface , 2013, Neural Computation.

[39]  J J Vidal,et al.  Toward direct brain-computer communication. , 1973, Annual review of biophysics and bioengineering.

[40]  Stefan Haufe,et al.  Single-trial analysis and classification of ERP components — A tutorial , 2011, NeuroImage.

[41]  Reinhold Scherer,et al.  A fully on-line adaptive BCI , 2006, IEEE Transactions on Biomedical Engineering.

[42]  F. Barbaresco Innovative tools for radar signal processing Based on Cartan’s geometry of SPD matrices & Information Geometry , 2008, 2008 IEEE Radar Conference.

[43]  Klaus-Robert Müller,et al.  Machine-Learning-Based Coadaptive Calibration for Brain-Computer Interfaces , 2011, Neural Computation.

[44]  L. F. Haas Hans Berger (1873–1941), Richard Caton (1842–1926), and electroencephalography , 2003, Journal of neurology, neurosurgery, and psychiatry.

[45]  Jason Farquhar,et al.  2009 Special Issue: A linear feature space for simultaneous learning of spatio-spectral filters in BCI , 2009 .

[46]  Matthias Krauledat,et al.  Analysis of nonstationarities in EEG signals for improving brain-computer interface performance , 2008 .

[47]  E. Curran,et al.  Learning to control brain activity: A review of the production and control of EEG components for driving brain–computer interface (BCI) systems , 2003, Brain and Cognition.

[48]  M. Grosse-Wentrup,et al.  Biased feedback in brain-computer interfaces , 2010, Journal of NeuroEngineering and Rehabilitation.

[49]  Radford M. Neal Pattern Recognition and Machine Learning , 2007, Technometrics.

[50]  N. Birbaumer,et al.  BCI2000: a general-purpose brain-computer interface (BCI) system , 2004, IEEE Transactions on Biomedical Engineering.